using plyr
require(plyr)
set.seed(45)
df <- data.frame(year=sample(2000:2012, 25, replace=T), score=sample(25))
ddply(df, .(year), summarise, max.score=max(score))
using data.table
require(data.table)
dt <- data.table(df, key="year")
dt[, list(max.score=max(score)), by=year]
using aggregate
:
o <- aggregate(df$score, list(df$year) , max)
names(o) <- c("year", "max.score")
using ave
:
df1 <- df
df1$max.score <- ave(df1$score, df1$year, FUN=max)
df1 <- df1[!duplicated(df1$year), ]
Edit: In case of more columns, a data.table solution would be the best (my opinion :))
set.seed(45)
df <- data.frame(year=sample(2000:2012, 25, replace=T), score=sample(25),
alpha = sample(letters[1:5], 25, replace=T), beta=rnorm(25))
# convert to data.table with key=year
dt <- data.table(df, key="year")
# get the subset of data that matches this criterion
dt[, .SD[score %in% max(score)], by=year]
# year score alpha beta
# 1: 2000 20 b 0.8675148
# 2: 2001 21 e 1.5543102
# 3: 2002 22 c 0.6676305
# 4: 2003 18 a -0.9953758
# 5: 2004 23 d 2.1829996
# 6: 2005 25 b -0.9454914
# 7: 2007 17 e 0.7158021
# 8: 2008 12 e 0.6501763
# 9: 2011 24 a 0.7201334
# 10: 2012 19 d 1.2493954