Let's decode some floats, and see what's actually going on! I'm going to use Common Lisp, which has a handy function for getting at the significand (a.k.a mantissa) and exponent of a floating-point number without needing to twiddle any bits. All floats used are IEEE double-precision floats.
> (integer-decode-float 1.0d0)
4503599627370496
-52
1
That is, if we consider the value stored in the significand as an integer, it is the maximum power of 2 available (4503599627370496 = 2^52), scaled down (2^-52). (It isn't stored as 1 with an exponent of 0 because it's simpler for the significand to never have zeros on the left, and this allows us to skip representing the leftmost 1 bit and have more precision. Numbers not in this form are called denormal.)
Let's look at 1e16.
> (integer-decode-float 1d16)
5000000000000000
1
1
Here we have the representation (5000000000000000) * 2^1. Note that the significand, despite being a nice round decimal number, is not a power of 2; this is because 1e16 is not a power of 2. Every time you multiply by 10, you are multiplying by 2 and 5; multiplying by 2 is just incrementing the exponent, but multiplying by 5 is an "actual" multiplication, and here we've multiplied by 5 16 times.
5000000000000000 = 10001110000110111100100110111111000001000000000000000 (base 2)
Observe that this is a 53-bit binary number, as it should be since double floats have a 53-bit significand.
But the key to understanding the situation is that the exponent is 1. (The exponent being small is an indication that we are getting close to the limits of precision.) This means that the float value is 2^1 = 2 times this significand.
Now, what happens when we try to represent adding 1 to this number? Well, we need to represent 1 at the same scale. But the smallest change we can make in this number is exactly 2, because the least significant bit of the significand has value 2!
That is, if we increment the significand, making the smallest possible change, we get
5000000000000001 = 10001110000110111100100110111111000001000000000000001 (base 2)
and when we apply the exponent, we get 2 * 5000000000000001 = 10000000000000002, which is exactly the value you observed. You can only have either 10000000000000000 or 10000000000000002, and 10000000000000001.1 is closer to the latter.
(Note that the issue here isn't even that decimal numbers aren't exact in binary! There's no binary "repeating decimals" here, and there's plenty of 0 bits on the right end of the significand — it's just that your input neatly falls just beyond the lowest bit.)