PyML has a function for graphing decision surfaces.
First you need to tell PyML which data to use. Here I use a sparsevectordata with my feature vectors. This is the one I used to train my SVM.
demo2d.setData(training_vector)
Then you need to tell it which classifier you want to use. I give it a trained SVM.
demo2d.decisionSurface(best_svm, fileName = "dec.pdf")
However, I get this error message:
Traceback (most recent call last):
**deleted by The Unfun Cat**
demo2d.decisionSurface(best_svm, fileName = "dec.pdf")
File "/opt/local/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/PyML/demo/demo2d.py", line 140, in decisionSurface
results = classifier.test(gridData)
File "/opt/local/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/PyML/evaluators/assess.py", line 45, in test
classifier.verifyData(data)
File "/opt/local/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/PyML/classifiers/baseClassifiers.py", line 55, in verifyData
if len(misc.intersect(self.featureID, data.featureID)) != len(self.featureID) :
AttributeError: 'SVM' object has no attribute 'featureID'