As per advice given to me in this answer, I have implemented a Runge-Kutta integrator in my gravity simulator.
However, after I simulate one year of the solar system, the positions are still off by cca 110 000 kilometers, which isn't acceptable.
My initial data was provided by NASA's HORIZONS system. Through it, I obtained position and velocity vectors of the planets, Pluto, the Moon, Deimos and Phobos at a specific point in time.
These vectors were 3D, however, some people told me that I could ignore the third dimension as the planets aligned themselves in a plate around the Sun, and so I did. I merely copied the x-y coordinates into my files.
This is the code of my improved update method:
"""
Measurement units:
[time] = s
[distance] = m
[mass] = kg
[velocity] = ms^-1
[acceleration] = ms^-2
"""
class Uni:
def Fg(self, b1, b2):
"""Returns the gravitational force acting between two bodies as a Vector2."""
a = abs(b1.position.x - b2.position.x) #Distance on the x axis
b = abs(b1.position.y - b2.position.y) #Distance on the y axis
r = math.sqrt(a*a + b*b)
fg = (self.G * b1.m * b2.m) / pow(r, 2)
return Vector2(a/r * fg, b/r * fg)
#After this is ran, all bodies have the correct accelerations:
def updateAccel(self):
#For every combination of two bodies (b1 and b2) out of all bodies:
for b1, b2 in combinations(self.bodies.values(), 2):
fg = self.Fg(b1, b2) #Calculate the gravitational force between them
#Add this force to the current force vector of the body:
if b1.position.x > b2.position.x:
b1.force.x -= fg.x
b2.force.x += fg.x
else:
b1.force.x += fg.x
b2.force.x -= fg.x
if b1.position.y > b2.position.y:
b1.force.y -= fg.y
b2.force.y += fg.y
else:
b1.force.y += fg.y
b2.force.y -= fg.y
#For body (b) in all bodies (self.bodies.itervalues()):
for b in self.bodies.itervalues():
b.acceleration.x = b.force.x/b.m
b.acceleration.y = b.force.y/b.m
b.force.null() #Reset the force as it's not needed anymore.
def RK4(self, dt, stage):
#For body (b) in all bodies (self.bodies.itervalues()):
for b in self.bodies.itervalues():
rd = b.rk4data #rk4data is an object where the integrator stores its intermediate data
if stage == 1:
rd.px[0] = b.position.x
rd.py[0] = b.position.y
rd.vx[0] = b.velocity.x
rd.vy[0] = b.velocity.y
rd.ax[0] = b.acceleration.x
rd.ay[0] = b.acceleration.y
if stage == 2:
rd.px[1] = rd.px[0] + 0.5*rd.vx[0]*dt
rd.py[1] = rd.py[0] + 0.5*rd.vy[0]*dt
rd.vx[1] = rd.vx[0] + 0.5*rd.ax[0]*dt
rd.vy[1] = rd.vy[0] + 0.5*rd.ay[0]*dt
rd.ax[1] = b.acceleration.x
rd.ay[1] = b.acceleration.y
if stage == 3:
rd.px[2] = rd.px[0] + 0.5*rd.vx[1]*dt
rd.py[2] = rd.py[0] + 0.5*rd.vy[1]*dt
rd.vx[2] = rd.vx[0] + 0.5*rd.ax[1]*dt
rd.vy[2] = rd.vy[0] + 0.5*rd.ay[1]*dt
rd.ax[2] = b.acceleration.x
rd.ay[2] = b.acceleration.y
if stage == 4:
rd.px[3] = rd.px[0] + rd.vx[2]*dt
rd.py[3] = rd.py[0] + rd.vy[2]*dt
rd.vx[3] = rd.vx[0] + rd.ax[2]*dt
rd.vy[3] = rd.vy[0] + rd.ay[2]*dt
rd.ax[3] = b.acceleration.x
rd.ay[3] = b.acceleration.y
b.position.x = rd.px[stage-1]
b.position.y = rd.py[stage-1]
def update (self, dt):
"""Pushes the uni 'dt' seconds forward in time."""
#Repeat four times:
for i in range(1, 5, 1):
self.updateAccel() #Calculate the current acceleration of all bodies
self.RK4(dt, i) #ith Runge-Kutta step
#Set the results of the Runge-Kutta algorithm to the bodies:
for b in self.bodies.itervalues():
rd = b.rk4data
b.position.x = b.rk4data.px[0] + (dt/6.0)*(rd.vx[0] + 2*rd.vx[1] + 2*rd.vx[2] + rd.vx[3]) #original_x + delta_x
b.position.y = b.rk4data.py[0] + (dt/6.0)*(rd.vy[0] + 2*rd.vy[1] + 2*rd.vy[2] + rd.vy[3])
b.velocity.x = b.rk4data.vx[0] + (dt/6.0)*(rd.ax[0] + 2*rd.ax[1] + 2*rd.ax[2] + rd.ax[3])
b.velocity.y = b.rk4data.vy[0] + (dt/6.0)*(rd.ay[0] + 2*rd.ay[1] + 2*rd.ay[2] + rd.ay[3])
self.time += dt #Internal time variable
The algorithm is as follows:
- Update the accelerations of all bodies in the system
- RK4(first step)
- goto 1
- RK4(second)
- goto 1
- RK4(third)
- goto 1
- RK4(fourth)
Did I mess something up with my RK4 implementation? Or did I just start with corrupted data (too few important bodies and ignoring the 3rd dimension)?
How can this be fixed?
Explanation of my data etc...
All of my coordinates are relative to the Sun (i.e. the Sun is at (0, 0)).
./my_simulator 1yr
Earth position: (-1.47589927462e+11, 18668756050.4)
HORIZONS (NASA):
Earth position: (-1.474760457316177E+11, 1.900200786726017E+10)
I got the 110 000 km
error by subtracting the Earth's x coordinate given by NASA from the one predicted by my simulator.
relative error = (my_x_coordinate - nasa_x_coordinate) / nasa_x_coordinate * 100
= (-1.47589927462e+11 + 1.474760457316177E+11) / -1.474760457316177E+11 * 100
= 0.077%
The relative error seems miniscule, but that's simply because Earth is really far away from the Sun both in my simulation and in NASA's. The distance is still huge and renders my simulator useless.