To find all partitions of a non-empty list (of even length n
) into two equal-sized parts, we can, to avoid repetitions, posit that the first element shall be in the first part. Then it remains to find all ways to split the tail of the list into one part of length n/2 - 1
and one of length n/2
.
-- not to be exported
splitLen :: Int -> Int -> [a] -> [([a],[a])]
splitLen 0 _ xs = [([],xs)]
splitLen _ _ [] = error "Oops"
splitLen k l ys@(x:xs)
| k == l = [(ys,[])]
| otherwise = [(x:us,vs) | (us,vs) <- splitLen (k-1) (l-1) xs]
++ [(us,x:vs) | (us,vs) <- splitLen k (l-1) xs]
does that splitting if called appropriately. Then
partitions :: [a] -> [([a],[a])]
partitions [] = [([],[])]
partitions (x:xs)
| even len = error "Original list with odd length"
| otherwise = [(x:us,vs) | (us,vs) <- splitLen half len xs]
where
len = length xs
half = len `quot` 2
generates all the partitions without redundantly computing duplicates.
luqui raises a good point. I haven't taken into account the possibility that you'd want to split lists with repeated elements. With those, it gets a little more complicated, but not much. First, we group the list into equal elements (done here for an Ord
constraint, for only Eq
, that could still be done in O(length²)
). The idea is then similar, to avoid repetitions, we posit that the first half contains more elements of the first group than the second (or, if there is an even number in the first group, equally many, and similar restrictions hold for the next group etc.).
repartitions :: Ord a => [a] -> [([a],[a])]
repartitions = map flatten2 . halves . prepare
where
flatten2 (u,v) = (flatten u, flatten v)
prepare :: Ord a => [a] -> [(a,Int)]
prepare = map (\xs -> (head xs, length xs)) . group . sort
halves :: [(a,Int)] -> [([(a,Int)],[(a,Int)])]
halves [] = [([],[])]
halves ((a,k):more)
| odd total = error "Odd number of elements"
| even k = [((a,low):us,(a,low):vs) | (us,vs) <- halves more] ++ [normalise ((a,c):us,(a,k-c):vs) | c <- [low + 1 .. min half k], (us,vs) <- choose (half-c) remaining more]
| otherwise = [normalise ((a,c):us,(a,k-c):vs) | c <- [low + 1 .. min half k], (us,vs) <- choose (half-c) remaining more]
where
remaining = sum $ map snd more
total = k + remaining
half = total `quot` 2
low = k `quot` 2
normalise (u,v) = (nz u, nz v)
nz = filter ((/= 0) . snd)
choose :: Int -> Int -> [(a,Int)] -> [([(a,Int)],[(a,Int)])]
choose 0 _ xs = [([],xs)]
choose _ _ [] = error "Oops"
choose need have ((a,k):more) = [((a,c):us,(a,k-c):vs) | c <- [least .. most], (us,vs) <- choose (need-c) (have-k) more]
where
least = max 0 (need + k - have)
most = min need k
flatten :: [(a,Int)] -> [a]
flatten xs = xs >>= uncurry (flip replicate)