A simple k-combination of a finite set S is a subset of k distinct elements of S. Specifying a subset does not arrange them in a particular order.
You can use the CombinatoricsLib. CombinatoricsLib is a java library for generating combinatorial objects. https://code.google.com/p/combinatoricslib/
Using this:
public static void main(String[] args) {
// Create the initial vector
ICombinatoricsVector<Integer> initialVector = Factory.createVector(
new Integer[] {1, 5, 4, 3, 6, 9, 7, 4, 3, 8, 2, 1, 6, 3, 7} );
int subsetMaxSize = 5;
int upperLimit = 10;
int lowerLimit = 8;
for(int i = 1; i <= subsetMaxSize; i++)
{
Generator<Integer> gen = Factory.createSimpleCombinationGenerator(initialVector, i);
for (ICombinatoricsVector<Integer> combination : gen)
{
int sum = vectorSum(combination);
if(validateSum(sum, lowerLimit, upperLimit))
printVector(combination);
}
}
}
public static boolean validateSum(Integer value, Integer lowerLimit, Integer upperLimit)
{
if(value <= upperLimit && value > lowerLimit)
return true;
return false;
}
public static Integer vectorSum(ICombinatoricsVector<Integer> vect)
{
Integer sum = 0;
for(int i = 0; i < vect.getSize(); i++)
sum += vect.getValue(i);
return sum;
}
public static void printVector(ICombinatoricsVector<Integer> vect)
{
String output = "";
for(int i = 0; i < vect.getSize(); i++)
output += vect.getValue(i) + ", ";
System.out.println(output);
}
will return the output
9,
1, 9,
1, 8,
5, 4,
5, 4,
4, 6,
4, 6,
3, 6,
3, 7,
3, 6,
3, 7,
6, 4,
6, 3,
6, 3,
9, 1,
7, 3,
7, 2,
7, 3,
4, 6,
3, 6,
3, 7,
8, 2,
8, 1,
2, 7,
6, 3,
3, 7,
1, 5, 4,
1, 5, 3,
1, 5, 4,
1, 5, 3,
1, 5, 3,
1, 4, 4,
1, 3, 6,
1, 3, 6,
1, 6, 3,
1, 6, 2,
1, 6, 3,
1, 7, 2,
1, 7, 1,
1, 3, 6,
1, 8, 1,
1, 2, 6,
1, 2, 7,
1, 1, 7,
1, 6, 3,
5, 4, 1,
5, 3, 2,
5, 3, 1,
5, 4, 1,
5, 3, 2,
5, 3, 1,
5, 2, 3,
5, 1, 3,
4, 3, 3,
4, 3, 2,
4, 3, 3,
4, 4, 2,
4, 4, 1,
4, 3, 2,
4, 3, 3,
4, 2, 3,
3, 6, 1,
3, 4, 3,
3, 4, 2,
3, 4, 3,
3, 3, 3,
3, 1, 6,
6, 3, 1,
6, 2, 1,
6, 1, 3,
7, 2, 1,
4, 3, 2,
4, 3, 3,
4, 2, 3,
3, 1, 6,
2, 1, 6,
2, 1, 7,
1, 6, 3,
1, 5, 3, 1,
1, 5, 3, 1,
1, 5, 2, 1,
1, 5, 1, 3,
1, 4, 3, 2,
1, 4, 3, 1,
1, 4, 4, 1,
1, 4, 3, 2,
1, 4, 3, 1,
1, 4, 2, 3,
1, 4, 1, 3,
1, 3, 4, 2,
1, 3, 4, 1,
1, 3, 3, 2,
1, 3, 3, 3,
1, 3, 2, 3,
1, 6, 2, 1,
1, 4, 3, 2,
1, 4, 3, 1,
1, 4, 2, 3,
1, 4, 1, 3,
1, 3, 2, 3,
1, 2, 1, 6,
4, 3, 2, 1,
4, 3, 2, 1,
4, 2, 1, 3,
3, 4, 2, 1,
3, 3, 2, 1,
3, 3, 1, 3,
3, 2, 1, 3,
4, 3, 2, 1,
4, 2, 1, 3,
3, 2, 1, 3,
1, 3, 3, 2, 1,
1, 3, 2, 1, 3,
1, 3, 2, 1, 3,