One of the most common case of a macro of this form:
#define _M(x) x
is to provide backwards compatibility for compilers that only supported the original K&R dialect of C, that predated the now-ubiquitous ANSI C dialect. In the original K&R dialect of the language, function arguments were not specified when declaring the function. In 1989, ANSI standardized the language and incorporated a number of improvements, including function prototypes that declared the number of type of arguments.
int f(int x, double y); /* ANSI C. K&R compilers would not accept this */
int f(); /* Function declared in the original K&R dialect */
While compilers that support the original K&R dialect of C are rare (or extinct) these days, a lot of software was written when both kinds of compilers needed to be supported, and macros provided an easy way to support both. There are still a lot of headers laying about that provide this backwards compatibility.
To provide backwards compatibility for K&R compilers, many header files have the following:
#if ANSI_PROTOTYPES
# define _P(x) x
#else
# define _P(x) ()
#endif
...
int f _P((int x, double y));
If the ANSI_PROTOTYPES
definition has been correctly set (either by the user or by some prior #ifdef
logic), then you get the desired behavior:
- If ANSI_PROTOTYPES is defined, the definition expands to
int f(int x, double y)
.
- If ANSI_PROTOTYPES is not defined, the definition expands to
int f()