Since you did a pretty good job solving your own problem with the machine code, I figured you deserved some help with the portable version. I would leave an ifdef
in where you do just use the assembly if in gnu on x86.
Anyway, here is an implementation based on my general answer. I'm pretty sure this is correct, but no guarantees, I just banged this out last night. You probably should get rid of the statics positive_result[]
and result_negative
- those are just artefacts of my unit test.
#include <stdlib.h>
#include <stdio.h>
// stdarg.h doesn't help much here because we need to call llabs()
typedef unsigned long long uint64_t;
typedef signed long long int64_t;
#define B32 0xffffffffUL
static uint64_t positive_result[2]; // used for testing
static int result_negative; // used for testing
static void mixed(uint64_t *result, uint64_t innerTerm)
{
// the high part of innerTerm is actually the easy part
result[1] += innerTerm >> 32;
// the low order a*d might carry out of the low order result
uint64_t was = result[0];
result[0] += (innerTerm & B32) << 32;
if (result[0] < was) // carry!
++result[1];
}
static uint64_t negate(uint64_t *result)
{
uint64_t t = result[0] = ~result[0];
result[1] = ~result[1];
if (++result[0] < t)
++result[1];
return result[1];
}
uint64_t higherMul(int64_t sx, int64_t sy)
{
uint64_t x, y, result[2] = { 0 }, a, b, c, d;
x = (uint64_t)llabs(sx);
y = (uint64_t)llabs(sy);
a = x >> 32;
b = x & B32;
c = y >> 32;
d = y & B32;
// the highest and lowest order terms are easy
result[1] = a * c;
result[0] = b * d;
// now have the mixed terms ad + bc to worry about
mixed(result, a * d);
mixed(result, b * c);
// now deal with the sign
positive_result[0] = result[0];
positive_result[1] = result[1];
result_negative = sx < 0 ^ sy < 0;
return result_negative ? negate(result) : result[1];
}