I need to find intrinsic calibration parameters of a single. To do this I take several images of checkerboard patten from different angles and then use calibration software.
To make the calibration pattern as flat as possible, I print it on a paper and cover with a 3mm glass. Obviously image of the pattern is modified by glass, because it has a different refraction coefficient compared to air.
Extrinsic parameters will be distorted by the glass. This is because checkerboard is not in place we see it in. However, if thickness of the glass and refraction coefficients of glass and air are known, it seems to be possible to recover extrinsic parameters.
So, the questions are:
- Can extrinsic parameters be calculated, and if yes, then how? (This is not necessary right now, just an interesting theoretical question)
- Are intrinsic calibration parameters obtained from these images equivalent to ones obtained from a usual calibration procedure (without cover glass)?
By using a glass, calibration parameters as reported by GML Camera Calibration Toolbox (based on OpenCV), become much more accurate. (Does it make any sense at all?) But this approach has a little drawback - unwanted reflections, especially from light sources.