As a relatively inexperienced user of the data.table package in R, I've been trying to process one text column into a large number of indicator columns (dummy variables), with a 1 in each column indicating that a particular sub-string was found within the string column. For example, I want to process this:
ID String
1 a$b
2 b$c
3 c
into this:
ID String a b c
1 a$b 1 1 0
2 b$c 0 1 1
3 c 0 0 1
I have figured out how to do the processing, but it takes longer to run than I would like, and I suspect that my code is inefficient. A reproduceable version of my code with dummy data is below. Note that in the real data, there are over 2000 substrings to search for, each substring is roughly 30 characters long, and there may be up to a few million rows. If need be, I can parallelize and throw lots of resources at the problem, but I want to optimize the code as much as possible. I have tried running Rprof, which suggested no obvious (to me) improvements.
set.seed(10)
elements_list <- c(outer(letters, letters, FUN = paste, sep = ""))
random_string <- function(min_length, max_length, separator) {
selection <- paste(sample(elements_list, ceiling(runif(1, min_length, max_length))), collapse = separator)
return(selection)
}
dt <- data.table(id = c(1:1000), messy_string = "")
dt[ , messy_string := random_string(2, 5, "$"), by = id]
create_indicators <- function(search_list, searched_string) {
y <- rep(0, length(search_list))
for(j in 1:length(search_list)) {
x <- regexpr(search_list[j], searched_string)
x <- x[1]
y[j] <- ifelse(x > 0, 1, 0)
}
return(y)
}
timer <- proc.time()
indicators <- matrix(0, nrow = nrow(dt), ncol = length(elements_list))
for(n in 1:nrow(dt)) {
indicators[n, ] <- dt[n, create_indicators(elements_list, messy_string)]
}
indicators <- data.table(indicators)
setnames(indicators, elements_list)
dt <- cbind(dt, indicators)
proc.time() - timer
user system elapsed
13.17 0.08 13.29
EDIT
Thanks for the great responses--all much superior to my method. The results of some speed tests below, with slight modifications to each function to use 0L and 1L in my own code, to store the results in separate tables by method, and to standardize the ordering. These are elapsed times from single speed tests (rather than medians from many tests), but the larger runs each take a long time.
Number of rows in dt 2K 10K 50K 250K 1M
OP 28.6 149.2 717.0
eddi 5.1 24.6 144.8 1950.3
RS 1.8 6.7 29.7 171.9 702.5
Original GT 1.4 7.4 57.5 809.4
Modified GT 0.7 3.9 18.1 115.2 473.9
GT4 0.1 0.4 2.26 16.9 86.9
Pretty clearly, the modified version of GeekTrader's approach is best. I'm still a bit vague on what each step is doing, but I can go over that at my leisure. Although somewhat out of bounds of the original question, if anyone wants to explain what GeekTrader and Ricardo Saporta's methods are doing more efficiently, it would be appreciated both by me and probably by anyone who visits this page in the future. I'm particularly interested to understand why some methods scale better than others.
*****EDIT # 2*****
I tried to edit GeekTrader's answer with this comment, but that seems not to work. I made two very minor modifications to the GT3 function, to a) order the columns, which adds a small amount of time, and b) replace 0 and 1 with 0L and 1L, which speeds things up a bit. Call the resulting function GT4. Table above edited to add times for GT4 at different table sizes. Clearly the winner by a mile, and it has the added advantage of being intuitive.