I have a set of vectors. I'm working on ways to reduce a n-dimensional vector to a unary value (1-d), say
(x1,x2,....,xn) ------> y
This single value needs to be the characteristic value of the vector. Each unique vector produces a unique output value. Which of the following methods is appropriate:
1- norm of the vector - square root of sum of squares that measures euclidian distance from origin
2- compute hash of F, using some hashing techniques avoiding collision
3- use linear regression to compute, y = w1*x1 + w2*x2 + ... + wn*xn - unlikely to be good if there is no good dependence of input values on output
4- feature extraction technique like PCA that assigns weights to each of x1,x2,..xn based on the set of input vectors