If you have a small number of data, you need less number of stages to achieve the required false alarm rate you set up. This means that the cascade classifier is "good enough" so it doesn't have to grow further. The total false positive ratio is actually multiplied by every stage's ratio, so after a point, the value is achieved.
In your options you set it up to 0.9. Consider making it higher, like 0.95 or more.
Apart from that, your datasets are small, so it's easier for the algorithm to get good results when validating on them during training. The smaller the dataset, the easier for the classifier to be trained, so less stages are required. But this doesn't mean that it's better when running on real data. Also, if you keep the training size low and set a higher ratio, consider that the classifier will need more stages to finish and will be more complicated, but it's very possible that it will be over-trained on the training set.
To conclude, if the nature of your positive and negatives that you have, is making them easy to seperate, then you don't need so many samples. Of course that depends on what you are training the algorithm for. With your amount of samples, the 10 stages you put are a lot, so the algorithm terminates earlier (it's not necessarily bad).
When I was training faces, I think I had around 1 thousand of positive (including all the rotations/deviations) and 2-3 thousands of negatives, to need a classifier of around 11-13 levels, if I remember correctly.
The tutorial of Naotoshi Neo had helped me a lot.
Also, what I noticed now, as Safir mentioned, you have too few negative samples comparing to the positive ones. The should be at least equal in number, preferably around 1.5 - 2 times more than the positives.