Here's a "complete" solution using an embedded iterator
. Some private traits are used to help reduce clutter in the class:
template <typename T> class List;
template <typename T>
class ListTraits {
protected:
typedef std::list<std::shared_ptr<T>> Impl;
typedef typename Impl::iterator Iterator;
typedef typename Impl::const_iterator ConstIterator;
typedef typename Impl::reverse_iterator Rotareti;
typedef typename Impl::const_reverse_iterator ConstRotareti;
typedef std::map<const List<T> *, typename Impl::iterator> Ref;
};
As shown, the list implementation will be using std::list
, but the underlying value type will be a std::shared_ptr
. What I am after is allowing an instance of T
to efficiently derive its own iterator
, to achieve O(1) erasure. This is done by using a Ref
to memoize the iterator of the item after it is inserted into the list.
template <typename T>
class List : public ListTraits<T> {
template <typename ITER> class IteratorT;
typedef ListTraits<T> Traits;
typename Traits::Impl impl_;
public:
typedef typename Traits::Impl::size_type size_type;
typedef typename Traits::Impl::value_type pointer;
typedef pointer value_type;
typedef IteratorT<typename Traits::Iterator> iterator;
typedef IteratorT<typename Traits::ConstIterator> const_iterator;
typedef IteratorT<typename Traits::Rotareti> reverse_iterator;
typedef IteratorT<typename Traits::ConstRotareti> const_reverse_iterator;
class Item;
~List () { while (!empty()) pop_front(); }
size_type size () const { return impl_.size(); }
bool empty () const { return impl_.empty(); }
iterator begin () { return impl_.begin(); }
iterator end () { return impl_.end(); }
const_iterator begin () const { return impl_.begin(); }
const_iterator end () const { return impl_.end(); }
reverse_iterator rbegin () { return impl_.rbegin(); }
reverse_iterator rend () { return impl_.rend(); }
const_reverse_iterator rbegin () const { return impl_.rbegin(); }
const_reverse_iterator rend () const { return impl_.rend(); }
pointer front () const { return !empty() ? impl_.front() : pointer(); }
pointer back () const { return !empty() ? impl_.back() : pointer(); }
void push_front (const pointer &e);
void pop_front ();
void push_back (const pointer &e);
void pop_back ();
void erase (const pointer &e);
bool contains (const pointer &e) const;
};
This List
follows mostly a queue like interface. But, an item may be removed from any position in the list. The simple functions mostly just delegate to the underlying std::list
. But the push_*()
and pop_*()
methods also memoize the iterator
.
template <typename T>
template <typename ITER>
class List<T>::IteratorT : public ITER {
friend class List<T>;
ITER iter_;
IteratorT (ITER i) : iter_(i) {}
public:
IteratorT () : iter_() {}
IteratorT & operator ++ () { ++iter_; return *this; }
IteratorT & operator -- () { --iter_; return *this; }
IteratorT operator ++ (int) { return iter_++; }
IteratorT operator -- (int) { return iter_--; }
bool operator == (const IteratorT &x) const { return iter_ == x.iter_; }
bool operator != (const IteratorT &x) const { return iter_ != x.iter_; }
T & operator * () const { return **iter_; }
pointer operator -> () const { return *iter_; }
};
This is the implementation of the helper template used to define the iterator types for List
. What it does differently is that the *
and ->
operators are defined in a way that makes the iterator behave like it is a T *
rather than a std::shared_ptr<T> *
(which is what the underlying iterator would normally do).
template <typename T>
class List<T>::Item {
friend class List<T>;
mutable typename Traits::Ref ref_;
};
A type T
that is derived from List<T>::Item
can be added to a List<T>
. This base class contains the Ref
instance used to memoize the iterator when the item is added to a list.
template <typename T>
inline void List<T>::push_front (const pointer &e) {
const Item &item = *e;
typename Traits::Ref::iterator i = item.ref_.find(this);
if (i == item.ref_.end()) {
item.ref_[this] = impl_.insert(impl_.begin(), e);
} else if (front() != e) {
impl_.erase(i->second);
i->second = impl_.insert(impl_.begin(), e);
}
}
template <typename T>
inline void List<T>::pop_front () {
if (!empty()) {
const Item &item = *front();
item.ref_.erase(this);
impl_.pop_front();
}
}
This code illustrates how the memoization is performed. When doing push_front()
, the item is first checked to see if it is already contained. If it is not, it is inserted, and the resulting iterator is added to the ref_
object. Otherwise, if it is not already the front, then the item is removed and reinserted at the front, and the memoized iterator is updated. pop_front()
removes the memoized iterator, and then calls pop_front()
on the the std::list
.
template <typename T>
inline void List<T>::push_back (const pointer &e) {
const Item &item = *e;
typename Traits::Ref::iterator i = item.ref_.find(this);
if (i == item.ref_.end()) {
item.ref_[this] = impl_.insert(impl_.end(), e);
} else if (back() != e) {
impl_.erase(i->second);
i->second = impl_.insert(impl_.end(), e);
}
}
template <typename T>
inline void List<T>::pop_back () {
if (!empty()) {
const Item &item = *back();
item.ref_.erase(this);
impl_.pop_back();
}
}
push_back()
and pop_back()
are similar to push_front()
and pop_front()
.
template <typename T>
inline void List<T>::erase (const pointer &e) {
const Item &item = *e;
typename Traits::Ref::iterator i = item.ref_.find(this);
if (i != item.ref_.end()) {
item.ref_.erase(i);
impl_.erase(i->second);
}
}
The erase()
routine retrieves the memoized iterator, and uses it to perform the erasure.
template <typename T>
inline bool List<T>::contains (const pointer &e) const {
const Item &item = *e;
typename Traits::Ref::iterator i = item.ref_.find(this);
return i != item.ref_.end();
}
Since an item is its own iterator in many respects, a find()
method should not be needed in this version of List
. But, in lieu of that is this contains()
method which is used to see if the element is a member of the list.
Now, the presented solution uses a std::map
to associate list instances to iterators. This maintains the spirit of O(1) if the number of lists an item is a member of simultaneously is relatively small.
I will try my hand at a boost::intrusive
version next.