It would be better to use Sage or some other proper tool for this.
The following is just unsophisticated non-expert attempt at doing something, but pivoted Gaussian elimination should give the exact result for invertibility:
import random
from scipy.linalg import toeplitz
import numpy as np
def is_invertible_F2(a):
"""
Determine invertibility by Gaussian elimination
"""
a = np.array(a, dtype=np.bool_)
n = a.shape[0]
for i in range(n):
pivots = np.where(a[i:,i])[0]
if len(pivots) == 0:
return False
# swap pivot
piv = i + pivots[0]
row = a[piv,i:].copy()
a[piv,i:] = a[i,i:]
a[i,i:] = row
# eliminate
a[i+1:,i:] -= a[i+1:,i,None]*row[None,:]
return True
n = 10
column = [random.choice([0,1]) for x in xrange(n)]
row = [column[0]]+[random.choice([0,1]) for x in xrange(n-1)]
matrix = toeplitz(column, row)
print(is_invertible_F2(matrix))
print(int(np.round(np.linalg.det(matrix))) % 2)
Note that np.bool_
is analogous to F_2 only in a restricted sense --- the binary operation +
in F_2 is -
for bool, and the unary op -
is +
. Multiplication is the same, though.
>>> x = np.array([0, 1], dtype=np.bool_)
>>> x[:,None] - x[None,:]
array([[False, True],
[ True, False]], dtype=bool)
>>> x[:,None] * x[None,:]
array([[False, False],
[False, True]], dtype=bool)
The gaussian elimination above uses only these operations, so it works.