I was looking at some pseudocode for boids and wrote it in C++. However, I am finding that boids will occasionally collide with each other. I thought that I had programmed it correctly, given how simple the psuedocode is. yet, when i display the locations of all the boids, some of them have the same coordinates.
The pseudocode from the link:
PROCEDURE rule2(boid bJ)
Vector c = 0;
FOR EACH BOID b
IF b != bJ THEN
IF |b.position - bJ.position| < 100 THEN
c = c - (b.position - bJ.position)
END IF
END IF
END
RETURN c
END PROCEDURE
my code is:
std::pair <signed int, signed int> keep_distance(std::vector <Boid> & boids, Boid & boid){
signed int dx = 0;
signed int dy = 0;
for(Boid & b : boids){
if (boid != b){ // this checks an "id" number, not location
if (b.dist(boid) < MIN_DIST){
dx -= b.get_x() - boid.get_x();
dy -= b.get_y() - boid.get_y();
}
}
}
return std::pair <signed int, signed int> (dx, dy);
}
with
MIN_DIST = 100;
unsigned int Boid::dist(const Boid & b){
return (unsigned int) sqrt((b.x - x) * (b.x - x) + (b.y - y) * (b.y - y));
}
the only major difference is between these two codes should be that instead of vector c
, im using the components instead.
the order of functions i am using to move each boid around is:
center_of_mass(boids, new_boids[i]); // rule 1
match_velocity(boids, new_boids[i]); // rule 3
keep_within_bound(new_boids[i]);
tendency_towards_place(new_boids[i], mouse_x, mouse_y);
keep_distance(boids, new_boids[i]); // rule 2
is there something obvious im not seeing? maybe some silly vector arithmetic i did wrong?