I need to drop one column from a data.frame containing a few hundred columns.
With a data.frame
, I'd use subset
to do this conveniently:
> dat <- data.table( data.frame(x=runif(10),y=rep(letters[1:5],2),z=runif(10)),key='y' )
> subset(dat,select=c(-z))
x y
1: 0.1969049 a
2: 0.7916696 a
3: 0.9095970 b
4: 0.3529506 b
5: 0.4923602 c
6: 0.5993034 c
7: 0.1559861 d
8: 0.9929333 d
9: 0.3980169 e
10: 0.1921226 e
Obviously this still works, but it seems like not a very data.table
-like idiom. I could manually construct a list of the column names I wanted to keep, which seems a little more data.table
-like:
> dat[,list(x,y)]
x y
1: 0.1969049 a
2: 0.7916696 a
3: 0.9095970 b
4: 0.3529506 b
5: 0.4923602 c
6: 0.5993034 c
7: 0.1559861 d
8: 0.9929333 d
9: 0.3980169 e
10: 0.1921226 e
But then I have to construct such a list, which is clunky.
Is subset
the proper way to conveniently drop a column or two, or does it cause a performance hit? If not, what's the better way?
Edit
Benchmarks:
> dat <- data.table( data.frame(x=runif(10^7),y=rep(letters[1:10],10^6),z=runif(10^7)),key='y' )
> microbenchmark( subset(dat,select=c(-z)), dat[,list(x,y)] )
Unit: milliseconds
expr min lq median uq max
1 dat[, list(x, y)] 102.62826 167.86793 170.72847 199.89789 792.0207
2 subset(dat, select = c(-z)) 33.26356 52.55311 53.53934 55.00347 180.8740
But really where it may matter more is for memory if subset
copies the whole data.table
.