I have an array of edges, which is defined as a C-style array of doubles, where every 4 doubles define an edge, like this:
double *p = ...;
printf("edge1: %lf %lf %lf %lf\n", p[0], p[1], p[2], p[3]);
printf("edge2: %lf %lf %lf %lf\n", p[4], p[5], p[6], p[7]);
So I want to use std::sort()
to sort it by edge length. If it was a struct Edge { double x1, y1, x2, y2; }; Edge *p;
, I would be good to go.
But in this case, the double array has a block size that is not expressed by the pointer type. qsort()
allows you to explicitly specify the block size, but std::sort()
infers the block-size by the pointer type.
For performance reasons (both memory-usage and CPU), let's say that it's undesirable to create new arrays, or transform the array somehow. For performance reasons again, let's say that we do want to use std::sort()
instead of qsort()
.
Is it possible to call std::sort()
without wasting a single CPU cycle on transforming the data?
Possible approach:
An obvious approach is to try to force-cast the pointer:
double *p = ...;
struct Edge { double arr[4]; };
Edge *p2 = reinterpret_cast<Edge*>(p);
std::sort(...);
But how do I make sure the data is aligned properly? Also, how do I make sure it will always be aligned properly on all platforms and architectures?
Or can I use a typedef double[4] Edge;
?