Big Omega is supposed to be the opposite of Big O, but they can always have the same value, because by definition Big O means:
g(x) so that cg(x) is bigger or equal to f(x)
and Big Omega means
g(x) so that cg(x) is smaller or equal to f(x)
the only thing that changes is the value of c, if the value of c is an arbitrary value (a value that we choose to meet inequality), then Big Omega and Big O will be the same. So what's the point of those two? What purpose do they serve?