I originally posted this over at the related question Sample Datasets in Pandas, but since it is relevant outside pandas I am including it here as well.
There are many ways that are now available for accessing sample data sets in Python. Personally, I tend to stick with whatever package I am
already using (usually seaborn or pandas). If you need offline access,
installing the data set with Quilt seems to be the only option.
Seaborn
The brilliant plotting package seaborn
has several built-in sample data sets.
import seaborn as sns
iris = sns.load_dataset('iris')
iris.head()
sepal_length sepal_width petal_length petal_width species
0 5.1 3.5 1.4 0.2 setosa
1 4.9 3.0 1.4 0.2 setosa
2 4.7 3.2 1.3 0.2 setosa
3 4.6 3.1 1.5 0.2 setosa
4 5.0 3.6 1.4 0.2 setosa
Pandas
If you do not want to import seaborn
, but still want to access its sample
data sets, you can read the seaborn sample data from its URL:
iris = pd.read_csv('https://raw.githubusercontent.com/mwaskom/seaborn-data/master/iris.csv')
Note that the sample data sets containing categorical columns have their column
type modified by sns.load_dataset()
and the result might not be the same
by getting it from the url directly. The iris and tips sample data sets are also
available in the pandas github repo here.
R sample datasets
Since any dataset can be read via pd.read_csv()
, it is possible to access all
R's sample data sets by copying the URLs from this R data set
repository.
Additional ways of loading the R sample data sets include
statsmodel
import statsmodels.api as sm
iris = sm.datasets.get_rdataset('iris').data
and PyDataset
from pydataset import data
iris = data('iris')
scikit-learn
scikit-learn
returns sample data as numpy arrays rather than a pandas data
frame.
from sklearn.datasets import load_iris
iris = load_iris()
# `iris.data` holds the numerical values
# `iris.feature_names` holds the numerical column names
# `iris.target` holds the categorical (species) values (as ints)
# `iris.target_names` holds the unique categorical names
Quilt
Quilt is a dataset manager created to facilitate
dataset management. It includes many common sample datasets, such as
several from the uciml sample
repository. The quick start
page shows how to install
and import the iris data set:
# In your terminal
$ pip install quilt
$ quilt install uciml/iris
After installing a dataset, it is accessible locally, so this is the best option if you want to work with the data offline.
import quilt.data.uciml.iris as ir
iris = ir.tables.iris()
sepal_length sepal_width petal_length petal_width class
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa
3 4.6 3.1 1.5 0.2 Iris-setosa
4 5.0 3.6 1.4 0.2 Iris-setosa
Quilt also support dataset versioning and include a short
description of each dataset.