I have written a program in Python which automatically reads score sheets like this one
At the moment I am using the following basic strategy:
- Deskew the image using ImageMagick
- Read into Python using PIL, converting the image to B&W
- Calculate calculate the sums of pixels in the rows and the columns
- Find peaks in these sums
- Check the intersections implied by these peaks for fill.
The result of running the program is shown in this image:
You can see the peak plots below and to the right of the image shown in the top left. The lines in the top left image are the positions of the columns and the red dots show the identified scores. The histogram bottom right shows the fill levels of each circle, and the classification line.
The problem with this method is that it requires careful tuning, and is sensitive to differences in scanning settings. Is there a more robust way of recognising the grid, which will require less a-priori information (at the moment I am using knowledge about how many dots there are) and is more robust to people drawing other shapes on the sheets? I believe it may be possible using a 2D Fourier Transform, but I'm not sure how.
I am using the EPD, so I have quite a few libraries at my disposal.