As many of the guys pointed out it is legal.
However, "IS-A" part is not that simple. When it comes to "dynamic polymorphism" "IS-A" relation holds, I.e. everything you can do with Super you can also do with Derived instance.
However, in C++ we also have something that is often referred as static polymorphism (templates, most of the time). Consider the following example:
class A {
public:
virtual int m() {
return 1;
}
};
class B : public A {
private:
virtual int m() {
return 2;
}
};
template<typename T>
int fun(T* obj) {
return obj->m();
}
Now, when you try to use "dynamic polymorphism" everything seems to be ok:
A* a = new A();
B* b = new B();
// dynamic polymorphism
std::cout << a->m(); // ok
std::cout << dynamic_cast<A*>(b)->m(); // ok - B instance conforms A interface
// std::cout << b->m(); fails to compile due to overriden visibility - expected since technically does not violate IS-A relationship
... but when you use "static polymorphism" you can say that "IS-A" relation no longer holds:
A* a = new A();
B* b = new B();
// static polymorphism
std::cout << fun(a); // ok
//std::cout << fun(b); // fails to compile - B instance does not conform A interface at compile time
So, in the end, changing visibility for method is "rather legal" but that's one of the ugly things in C++ that may lead you to pitfall.