697

I have constructed a condition that extracts exactly one row from my dataframe:

d2 = df[(df['l_ext']==l_ext) & (df['item']==item) & (df['wn']==wn) & (df['wd']==1)]

Now I would like to take a value from a particular column:

val = d2['col_name']

But as a result, I get a dataframe that contains one row and one column (i.e., one cell). It is not what I need. I need one value (one float number). How can I do it in pandas?

cottontail
  • 10,268
  • 18
  • 50
  • 51
Roman
  • 124,451
  • 167
  • 349
  • 456
  • 2
    If you tried some of these answers but ended up with a `SettingWithCopyWarning`, you can take a look at [this post](https://stackoverflow.com/questions/20625582/how-to-deal-with-settingwithcopywarning-in-pandas/53954986#53954986) for an explanation of the warning and possible workarounds/solutions. – cs95 Jan 22 '19 at 23:52
  • 5
    `df['col'].iloc[0]` is faster than `df.iloc[0]['col']` – Vipul Mar 12 '22 at 11:12

19 Answers19

788

If you have a DataFrame with only one row, then access the first (only) row as a Series using iloc, and then the value using the column name:

In [3]: sub_df
Out[3]:
          A         B
2 -0.133653 -0.030854

In [4]: sub_df.iloc[0]
Out[4]:
A   -0.133653
B   -0.030854
Name: 2, dtype: float64

In [5]: sub_df.iloc[0]['A']
Out[5]: -0.13365288513107493
Peter Mortensen
  • 30,738
  • 21
  • 105
  • 131
Andy Hayden
  • 359,921
  • 101
  • 625
  • 535
367

These are fast access methods for scalars:

In [15]: df = pandas.DataFrame(numpy.random.randn(5, 3), columns=list('ABC'))

In [16]: df
Out[16]:
          A         B         C
0 -0.074172 -0.090626  0.038272
1 -0.128545  0.762088 -0.714816
2  0.201498 -0.734963  0.558397
3  1.563307 -1.186415  0.848246
4  0.205171  0.962514  0.037709

In [17]: df.iat[0, 0]
Out[17]: -0.074171888537611502

In [18]: df.at[0, 'A']
Out[18]: -0.074171888537611502
Peter Mortensen
  • 30,738
  • 21
  • 105
  • 131
Jeff
  • 125,376
  • 21
  • 220
  • 187
  • 21
    I like this answer a lot. But whereas you can do `.iloc[-1]['A']` you cannot do `at[-1,'A']` to get the last row entry – hartmut Jan 16 '18 at 09:25
  • 9
    this should be the answer because we don't copy in memory an useless line to get only one element inside. – bormat Jun 21 '18 at 17:54
  • 9
    @hartmut You can always just do `at[df.index[-1],'A']` – cs95 Jan 22 '19 at 23:51
  • 3
    I like this answer the best. You can also refer to named indexes, which makes your code more readable: `df.at['my_row_name', 'my_column_name']` – LunkRat Apr 30 '22 at 20:14
301

You can turn your 1x1 dataframe into a NumPy array, then access the first and only value of that array:

val = d2['col_name'].values[0]
Peter Mortensen
  • 30,738
  • 21
  • 105
  • 131
Guillaume
  • 3,471
  • 1
  • 9
  • 14
  • 19
    I think this is the best answer since it does not return a pandas.series, and it's the simplest. – Sean McCarthy Jun 30 '19 at 23:33
  • 2
    As of now, this works in pandas as well, no need to have advantage over methods available in pandas, it is a method available in pandas. – Joey Oct 27 '20 at 01:46
49

It doesn't need to be complicated:

val = df.loc[df.wd==1, 'col_name'].values[0]
Eduardo Freitas
  • 941
  • 8
  • 6
48

Most answers are using iloc which is good for selection by position.

If you need selection-by-label, loc would be more convenient.

For getting a value explicitly (equiv to deprecated df.get_value('a','A'))

# This is also equivalent to df1.at['a','A']
In [55]: df1.loc['a', 'A']
Out[55]: 0.13200317033032932
Peter Mortensen
  • 30,738
  • 21
  • 105
  • 131
Shihe Zhang
  • 2,641
  • 5
  • 36
  • 57
33

I needed the value of one cell, selected by column and index names. This solution worked for me:

df.loc[1,:].values[0]

Natacha
  • 1,132
  • 16
  • 23
24

It looks like changes after pandas 10.1 or 13.1.

I upgraded from 10.1 to 13.1. Before, iloc is not available.

Now with 13.1, iloc[0]['label'] gets a single value array rather than a scalar.

Like this:

lastprice = stock.iloc[-1]['Close']

Output:

date
2014-02-26 118.2
name:Close, dtype: float64
Peter Mortensen
  • 30,738
  • 21
  • 105
  • 131
timeislove
  • 1,075
  • 1
  • 9
  • 14
19

The quickest and easiest options I have found are the following. 501 represents the row index.

df.at[501, 'column_name']
df.get_value(501, 'column_name')
Peter Mortensen
  • 30,738
  • 21
  • 105
  • 131
jroakes
  • 369
  • 1
  • 3
  • 10
  • 13
    `get_value` is deprecated now(v0.21.0 RC1 (October 13, 2017))[reference is here](https://pandas-docs.github.io/pandas-docs-travis/whatsnew.html#deprecations) `.get_value and .set_value on Series, DataFrame, Panel, SparseSeries, and SparseDataFrame are deprecated in favor of using .iat[] or .at[] accessors (GH15269)` – Shihe Zhang Oct 24 '17 at 02:46
11

In later versions, you can fix it by simply doing:

val = float(d2['col_name'].iloc[0])
Peter Mortensen
  • 30,738
  • 21
  • 105
  • 131
8

I am not sure if this is a good practice, but I noticed I can also get just the value by casting the series as float.

E.g.,

rate

3 0.042679

Name: Unemployment_rate, dtype: float64

float(rate)

0.0426789

Peter Mortensen
  • 30,738
  • 21
  • 105
  • 131
Michael Wei
  • 81
  • 1
  • 2
8
df_gdp.columns

Index([u'Country', u'Country Code', u'Indicator Name', u'Indicator Code', u'1960', u'1961', u'1962', u'1963', u'1964', u'1965', u'1966', u'1967', u'1968', u'1969', u'1970', u'1971', u'1972', u'1973', u'1974', u'1975', u'1976', u'1977', u'1978', u'1979', u'1980', u'1981', u'1982', u'1983', u'1984', u'1985', u'1986', u'1987', u'1988', u'1989', u'1990', u'1991', u'1992', u'1993', u'1994', u'1995', u'1996', u'1997', u'1998', u'1999', u'2000', u'2001', u'2002', u'2003', u'2004', u'2005', u'2006', u'2007', u'2008', u'2009', u'2010', u'2011', u'2012', u'2013', u'2014', u'2015', u'2016'], dtype='object')

df_gdp[df_gdp["Country Code"] == "USA"]["1996"].values[0]

8100000000000.0

Su Tingxuan
  • 129
  • 1
  • 2
7

I've run across this when using dataframes with MultiIndexes and found squeeze useful.

From the documentation:

Squeeze 1 dimensional axis objects into scalars.

Series or DataFrames with a single element are squeezed to a scalar. DataFrames with a single column or a single row are squeezed to a Series. Otherwise the object is unchanged.

# Example for a dataframe with MultiIndex
> import pandas as pd

> df = pd.DataFrame(
                    [
                        [1, 2, 3],
                        [4, 5, 6],
                        [7, 8, 9]
                    ],
                    index=pd.MultiIndex.from_tuples( [('i', 1), ('ii', 2), ('iii', 3)] ),
                    columns=pd.MultiIndex.from_tuples( [('A', 'a'), ('B', 'b'), ('C', 'c')] )
)

> df
       A  B  C
       a  b  c
i   1  1  2  3
ii  2  4  5  6
iii 3  7  8  9

> df.loc['ii', 'B']
   b
2  5

> df.loc['ii', 'B'].squeeze()
5

Note that while df.at[] also works (if you aren't needing to use conditionals) you then still AFAIK need to specify all levels of the MultiIndex.

Example:

> df.at[('ii', 2), ('B', 'b')]
5

I have a dataframe with a six-level index and two-level columns, so only having to specify the outer level is quite helpful.

Peter Mortensen
  • 30,738
  • 21
  • 105
  • 131
tyersome
  • 230
  • 3
  • 9
6

For pandas 0.10, where iloc is unavailable, filter a DF and get the first row data for the column VALUE:

df_filt = df[df['C1'] == C1val & df['C2'] == C2val]
result = df_filt.get_value(df_filt.index[0],'VALUE')

If there is more than one row filtered, obtain the first row value. There will be an exception if the filter results in an empty data frame.

Peter Mortensen
  • 30,738
  • 21
  • 105
  • 131
  • 4
    `get_value` is deprecated now(v0.21.0 RC1 (October 13, 2017)) [reference is here](https://pandas-docs.github.io/pandas-docs-travis/whatsnew.html#deprecations) `.get_value and .set_value on Series, DataFrame, Panel, SparseSeries, and SparseDataFrame are deprecated in favor of using .iat[] or .at[] accessors (GH15269)` – Shihe Zhang Oct 24 '17 at 03:06
  • 1
    But `iat` or `at` cannot get the value based on the column name. – sivabudh Oct 18 '19 at 09:03
4

Converting it to integer worked for me but if you need float it is also simple:

int(sub_df.iloc[0])

for float:

float(sub_df.iloc[0])
3

If a single row was filtered from a dataframe, one way to get a scalar value from a single cell is squeeze() (or item()):

df = pd.DataFrame({'A':range(5), 'B': range(5)})
d2 = df[df['A'].le(5) & df['B'].eq(3)]
val = d2['A'].squeeze()                 # 3

val = d2['A'].item()                    # 3

In fact, item() may be called on the index, so item + at combo could work.

msk = df['A'].le(5) & df['B'].eq(3)
val = df.at[df.index[msk].item(), 'B']  # 3

In fact, the latter method is much faster than any other method listed here to get a single cell value.

df = pd.DataFrame({'A':range(10000), 'B': range(10000)})
msk = df['A'].le(5) & df['B'].eq(3)

%timeit df.at[df.index[msk].item(), 'A']
# 31.4 µs ± 5.83 µs per loop (mean ± std. dev. of 7 runs, 10,000 loops each)
%timeit df.loc[msk, 'A'].squeeze()
# 143 µs ± 8.99 µs per loop (mean ± std. dev. of 7 runs, 10,000 loops each)
%timeit df.loc[msk, 'A'].item()
# 125 µs ± 1.56 µs per loop (mean ± std. dev. of 7 runs, 10,000 loops each)
%timeit df.loc[msk, 'A'].iat[0]
# 125 µs ± 1.96 µs per loop (mean ± std. dev. of 7 runs, 10,000 loops each)
%timeit df[msk]['A'].values[0]
# 189 µs ± 8.67 µs per loop (mean ± std. dev. of 7 runs, 10,000 loops each)
cottontail
  • 10,268
  • 18
  • 50
  • 51
2

Using .item() returns a scalar (not a Series), and it only works if there is a single element selected. It's much safer than .values[0] which will return the first element regardless of how many are selected.

>>> df = pd.DataFrame({'a': [1,2,2], 'b': [4,5,6]})
>>> df[df['a'] == 1]['a']  # Returns a Series
0    1
Name: a, dtype: int64
>>> df[df['a'] == 1]['a'].item()
1
>>> df2 = df[df['a'] == 2]
>>> df2['b']
1    5
2    6
Name: b, dtype: int64
>>> df2['b'].values[0]
5
>>> df2['b'].item()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/usr/lib/python3/dist-packages/pandas/core/base.py", line 331, in item
    raise ValueError("can only convert an array of size 1 to a Python scalar")
ValueError: can only convert an array of size 1 to a Python scalar
Emre
  • 503
  • 4
  • 7
0

Display the data from a certain cell in pandas dataframe

Using dataframe.iloc,

Dataframe.iloc should be used when given index is the actual index made when the pandas dataframe is created.

Avoid using dataframe.iloc on custom indices.

print(df['REVIEWLIST'].iloc[df.index[1]])

Using dataframe.loc,

Use dataframe.loc if you're using a custom index it can also be used instead of iloc too even the dataframe contains default indices.

print(df['REVIEWLIST'].loc[df.index[1315]])
SAM NIJIN
  • 1
  • 3
0

You can get the values like this:

df[(df['column1']==any_value) & (df['column2']==any_value) & (df['column']==any_value)]['column_with_values_to_get']

And you can add (df['columnx']==any_value) as much as you want

-3

To get the full row's value as JSON (instead of a Serie):

row = df.iloc[0]

Use the to_json method like below:

row.to_json()
Peter Mortensen
  • 30,738
  • 21
  • 105
  • 131
hzitoun
  • 5,492
  • 1
  • 36
  • 43