Normally there exist two different layers.
One layer lives at application level, usually as part of the C standard library. This is what you call through functions like malloc
and free
(or operator new
in C++, which in turn usually calls malloc
). This layer takes care of your allocations, but does not know about memory or where it comes from.
The other layer, at OS level, does not know and does not care anything about your allocations. It only maintains a list of fixed-size memory pages that have been reserved, allocated, and accessed, and with each page information such as where it maps to.
There are many different implementations for either layer, but in general it works like this:
When you allocate memory, the allocator (the "application level part") looks whether it has a matching block somewhere in its books that it can give to you (some allocators will split a larger block in two, if need be).
If it doesn't find a suitable block, it reserves a new block (usually much larger than what you ask for) from the operating system. sbrk
or mmap
on Linux, or VirtualAlloc
on Windows would be typical examples of functions it might use for that effect.
This does very little apart from showing intent to the operating system, and generating some page table entries.
The allocator then (logically, in its books) splits up that large area into smaller pieces according to its normal mode of operation, finds a suitable block, and returns it to you. Note that this returned memory does not necessarily even exist as phsyical memory (though most allocators write some metadata into the first few bytes of each allocated unit, so they necessarily pre-fault the pages).
In the mean time, invisibly, a background task zeroes out memory pages that were in use by some process once but have been freed. This happens all the time, on a tentative base, since sooner or later someone will ask for memory (often, that's what the idle task does).
Once you access an address in the page that contains your allocated block for the first time, you generate a fault. The page table entry of this yet non-existent page (it logically exists, just not phsyically) is replaced with a reference to a page from the pool of zero pages. In the uncommon case that there is none left, for example if huge amounts of memory are being allocated all the time, the OS swaps out a page which it believes will not be accessed any time soon, zeroes it, and returns this one.
Now the page becomes part of your working set, it corresponds to actual phsyical memory, and it accounts towards your process' quota. While your process is running, pages may be moved in and out of your working set, or may be paged out and in, as you exceed certain limits, and according to how much memory is needed and how it is accessed.
Once you call free
, the allocator puts the freed area back into its books. It may tell the OS that it does not need the memory any more instead, but usually this does not happen as it is not really necessary and it is more efficient to keep around a little extra memory and reuse it. Also, it may not be easy to free the memory because usually the units that you allocate/deallocate do not directly correspond with the units the OS works with (and, in the case of sbrk
they'd need to happen in the correct order, too).
When the process ends, the OS simply throws away all page table entries and adds all pages to the list of pages that the idle task will zero out. So the physical memory becomes available to the next process asking for some.