Once the problem is stated correctly you maybe able to firstly map the parameters to lower and
upper bounds of [0,1]. You can then implement the inequalities inside your function and optimise using an algorithm which accepts basic lower and upper bound constraints. nlminb
could be used but the vignette suggests the algorithm used may not be the best.
UPDATE:
With OP revised function
dumFun <- function(p){
p[1] -> M_CD; p[2] -> M_CC; p[3] -> M_A; p[4] -> M_D; p[5] -> M_P;
M_P <- 9*M_P; M_D <- M_P*M_D; M_A <- M_D*M_A; M_CC <- M_A*M_CC; M_CD <- M_CC*M_CD;
p[6] -> G_CD; p[7] -> G_CC; p[8] -> G_A; p[9] -> G_D;
G_D <- 9*G_D; G_A <- G_D*G_A; G_CC <- G_A*G_CC; G_CD <- G_CC*G_CD;
p[10] -> S_CD; p[11] -> S_CC; p[12] -> S_A; p[13] -> S_D;
S_D <- 9*S_D; S_A <- S_D*S_A; S_CC <- S_A*S_CC; S_CD <- S_CC*S_CD;
p[14] -> Q_CD; p[15] -> Q_CC; p[16] -> Q_A; p[17] -> Q_D; p[18] -> Q_P;
Q_P <- 3*Q_P; Q_D <- Q_P*Q_D; Q_A <- Q_D*Q_A; Q_CC <- Q_A*Q_CC; Q_CD <- Q_CC*Q_CD;
ad = 0.95*M_D + 0.28*G_D + 0.43*S_D + 2.25*Q_D
as = 0.017*M_A + 0.0064*G_A + 0.0076*S_A + 0.034*Q_A
ccb = 0.0093*M_CC+ 0.0028*G_CC + 0.0042*S_CC + 0.0186*Q_CC
ccd = 0.0223*M_CD + 0.0056*G_CD + 0.0078*S_CD + 0.0446*Q_CD
apb = 1.28*M_P + 2.56*Q_P
r1=(1+ccb*(1+ccd))*ad*as*100/(130-apb)
-r1
}
require(minqa)
p <- rep(.1, 18)
bobyqa(p, dumFun, lower = rep(0, length(p)), upper = rep(1, length(p)))
parameter estimates: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
objective: -9.65605526502482
number of function evaluations: 97
>