I also have an application that uses as much ram as it possibly can. You have a couple of options here depending on your specific scenario (all have drawbacks).
One of the simplest is to preallocate a circular buffer of classes (or bytes) that you are caching to consume all ram up front. This usually is not preferred because consuming all the RAM on a box when you don't need to is just plain Rude.
Another way to handle large caches (or keep from throwing out of memory exceptions) is to first check that the memory I need exists before allocation. This has the drawback of needing to serialize memory allocations. Otherwise the time between the available RAM check and the allocation you may run out of RAM.
Here is a sample of the best way I have found to do this in .NET:
//Wait for enough memory
var temp = new System.Diagnostics.PerformanceCounter("Memory", "Available MBytes");
long freeMemory = Convert.ToInt64(temp.NextValue()) * (long)1000000;
long neededMemory = (long)bytesToAllocate;
int attempts=1200; //two minutes
while (freeMemory < neededMemory)
{
//Signal that memory needs to be freed
Console.WriteLine("Waiting for enough free memory:. Free Memory:" + freeMemory + " Needed Memory(MB):" + neededMemory);
System.Threading.Thread.Sleep(100);
freeMemory = Convert.ToInt64(temp.NextValue()) * (long)1000000;
--attempts;
if (0 == attempts)
throw new OutOfMemoryException("Could not get enough free memory. File:" + Path.GetFileName(wavFileURL));
}
//Try and allocate the memory we need.
Furthermore once I am inside the while loop I signal that some memory needs to be freed (depending on your application). NOTE: I tried to simplify the code by using a Sleep statement but ultimately you would want some type of non polling operation if possible.
I am not sure about the specifics of your application but if you are multithreaded, or run many different executables then it may be better to serialize this memory check when allocated memory to the cache. If that is the case I use a Semaphore to make sure that only one thread and/or process can allocate RAM as needed. Similar to this:
Semaphore namedSemaphore = new Semaphore(1, 1, "MemoryAllocationSemaphore"); //named semaphores are cross process
if (bytesToAllocate > 2000000) //if we need less than 2MB then dont bother locking.
{
if (!namedSemaphore.WaitOne((int)TimeSpan.FromMinutes(15).TotalMilliseconds))
{
throw new TimeoutException("Waited over 15 minutes for aquiring memory allocation semaphore");
}
}
Then a little later on call this:
namedSemaphore.Release();
in a finally block to release the semaphore.
Another option is to use a multiple reader single writer lock. To have multiple threads pulling data from the cache (such as the ReaderWriterLock class). This has the advantage that while you are writing to can check memory pressure and cleanup then add more to the cache, yet still have multiple threads processing data. The drawback is of course the bottle neck of getting data into the cache comes from a single fixed point.