I was wondering which is the best machine learning technique to approximate a function that takes a 32-bit number and returns another 32-bit number, from a set of observations.
Thanks!
I was wondering which is the best machine learning technique to approximate a function that takes a 32-bit number and returns another 32-bit number, from a set of observations.
Thanks!
Multilayer perceptron neural networks would be worth taking a look at. Though you'll need to process the inputs to a floating point number between 0 and 1, and then map the outputs back to the original range.
There are several possible solutions to your problem:
1.) Fitting a linear hypothesis with least-squares method
In that case, you are approximating a hypothesis y = ax + b with the least squares method. This one is really easy to implement, but sometimes, a linear model is not good enough to fit your data. But - I would give this one a try first.
Good thing is that there is a closed form, so you can directly calculate parameters a and b from your data.
See Least Squares
2.) Fitting a non-linear model
Once seen that your linear model does not describe your function very well, you can try to fit higher polynomial models to your data.
Your hypothesis then might look like
y = ax² + bx + c
y = ax³ + bx² + cx + d
etc.
You can also use least squares method to fit your data, and techniques from the gradient descent types (simmulated annealing, ...). See also this thread: Fitting polynomials to data
Or, as in the other answer, try fitting a Neural Network - the good thing is that it will automatically learn the hypothesis, but it is not so easy to explain what the relation between input and output is. But in the end, a neural network is also a linear combination of nonlinear functions (like sigmoid or tanh functions).