It is adding a continuation - but manually constructing that continuation can be very painful, due to the need to carry around all the information about where we'd got to and what the local state is.
As a very simple example, I suggest you try to come up with the equivalent of this async method:
public static async Task<int> SumTwoOperationsAsync()
{
var firstTask = GetOperationOneAsync();
var secondTask = GetOperationTwoAsync();
return await firstTask + await secondTask;
}
// These are just examples - you don't need to translate them.
private async Task<int> GetOperationOneAsync()
{
await Task.Delay(500); // Just to simulate an operation taking time
return 10;
}
private async Task<int> GetOperationTwoAsync()
{
await Task.Delay(100); // Just to simulate an operation taking time
return 5;
}
Really try to come up with the equivalent of the first method. I think you'll find it takes quite a lot of code - especially if you actually want to get back to an appropriate thread each time. (Imagine code in that async method also modified a WPF UI, for example.) Oh, and make sure that if either of the tasks fails, your returned task fails too. (The async method will actually "miss" the failure of the second task if the first task also fails, but that's a relatively minor problem IMO.)
Next, work out how you'd need to change your code if you needed the equivalent of try
/finally
in the async
method. Again, that'll make the non-async method more complicated. It can all be done, but it's a pain in the neck.
So yes, it's "just" syntactic sugar. So is foreach
. So is a for
loop (or any other kind of loop). In the case of async
/await
, it's syntactic sugar which can do really rather a lot to transform your code.
There are lots of videos and blog posts around async, and I would expect that just watching/reading a few of them would give you enough insight to appreciate that this is far from a minor tweak: it radically changes how practical it is to write large amounts of asynchronous code correctly.
Additionally, being pattern-based, async/await doesn't only work on Task
/ Task<T>
. You can await anything which adheres to the awaitable pattern. In practice very few developers will need to implement the pattern themselves, but it allows for methods like Task.Yield
which returns a YieldAwaitable
rather than a task.