The short answer is because the standard specifies it. But are there any insurmountable technical barriers to allowing it?
C++ data structures have known size. Polymorphism typically requires that the data structures can vary in size. In general, you cannot store a different (larger) type within the storage of a smaller type, so storing a child class with extra variables (or other reasons to be larger) within storage for a parent class is not generally possible.
Now, we can get around this. We can create a buffer larger than what is required to store the parent class, and construct child classes within that buffer: but in this case, exposure to said instance will be via references, and you will carefully wrap the class.
This is similar to the technique known as "small object optimization" used by boost::any
, boost::variant
and many implementations of std::string
, where we store (by value) objects in a buffer within a class and manage their lifetime manually.
There is also an issue where Derived
pointers to an instance can have different values than Base
pointers to an instance: value instances of objects in C++ are presumed to exist where the storage for the instance starts by most implementations.
So in theory, C++ could allow polymorphic instances if we restricted it to derived classes that could be stored in the same memory footprint, with the same "pointer to" value for both Derived
and Base
, but this would be an extremely narrow corner case, and could reduce the kinds of optimizations and assumptions compilers could make about value instances of a class in nearly every case! (Right now, the compiler can assume that value instances of a class C
have virtual
methods that are not overridden elsewhere, as an example) That is a non trivial cost for an extremely marginal benefit.
What more, we are capable of using the C++ language to emulate this corner case using existing language features (placement new, references, and manual destruction) if we really need it, without imposing that above cost.