As the stepAIC()
function from the MASS
package has problems when used within a function, I use it with do.call()
(described here).
My problem sounds very easy but I could't find a solution for it: When I use do.call()
for a lm()
model with several raster layers, all the layers are saved within the model. If I want to print a summary()
of the model, it writes all the layers in the output and it gets really confusing. How do I get a "normal" summary
output, as I would get without using do.call
?
Here is a short example:
Create a list of raster layers:
xz.list <- lapply(1:5,function(x){
r1 <- raster(ncol=3, nrow=3)
values(r1) <- 1:ncell(r1)
r1
})
Convert them in a data.frame
:
xz<-getValues(stack(xz.list))
xz <- as.data.frame(xz)
Use do.call
for the lm
model:
fit1<-do.call("lm", list(xz[,1] ~ . , data = xz))
The summary()
output looks like this:
summary(fit1)
Call:
lm(formula = xz[, 1] ~ ., data = structure(list(layer.1 = 1:9,
layer.2 = 1:9, layer.3 = 1:9, layer.4 = 1:9, layer.5 = 1:9), .Names = c("layer.1",
"layer.2", "layer.3", "layer.4", "layer.5"), row.names = c(NA,
-9L), class = "data.frame"))
Residuals:
Min 1Q Median 3Q Max
-9.006e-16 -2.472e-16 -2.031e-16 -1.370e-16 1.724e-15
Coefficients: (4 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.184e-15 5.784e-16 2.047e+00 0.0798 .
layer.1 1.000e+00 1.028e-16 9.729e+15 <2e-16 ***
layer.2 NA NA NA NA
layer.3 NA NA NA NA
layer.4 NA NA NA NA
layer.5 NA NA NA NA
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 7.962e-16 on 7 degrees of freedom
Multiple R-squared: 1, Adjusted R-squared: 1
F-statistic: 9.465e+31 on 1 and 7 DF, p-value: < 2.2e-16
This doesn't look to bad in this small example, but it becomes a mess when you are using 10 or more raster
layers with about 32k values each. So I would like to make the output look like as I would just use the summary(lm)
function without do.call
:
fit<-lm(xz[,1] ~ . , data=xz)
summary(fit)
Call:
lm(formula = xz[, 1] ~ ., data = xz)
Residuals:
Min 1Q Median 3Q Max
-9.006e-16 -2.472e-16 -2.031e-16 -1.370e-16 1.724e-15
Coefficients: (4 not defined because of singularities)
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.184e-15 5.784e-16 2.047e+00 0.0798 .
layer.1 1.000e+00 1.028e-16 9.729e+15 <2e-16 ***
layer.2 NA NA NA NA
layer.3 NA NA NA NA
layer.4 NA NA NA NA
layer.5 NA NA NA NA
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 7.962e-16 on 7 degrees of freedom
Multiple R-squared: 1, Adjusted R-squared: 1
F-statistic: 9.465e+31 on 1 and 7 DF, p-value: < 2.2e-16