You may want to consider dynamicaly allocating your array so that you can just pass the pointer address down.
const int m = 5, n = 3;
int i = 0;
int* *arr; //Pointer to an integer pointer (Note can also be int **arr or int** arr)
arr = malloc(sizeof(int*)*(m+1)); //I add one because I am assuming that 'm' does not account for the terminating null character. But if you do not need a terminating null then you can remove this and the perantheses around the 'm'.
for(i = 0; i < m; i++)
{
arr[i] = malloc(sizeof(int*)*(n+1)); //Same as before
}
The inital malloc() call allocates memory for an array of integer arrays or said in another way, it allocates a pointer to a series of other pointers. The for loop will allocate an integer array of 'm' size for each element of the original array or said another way it will allocate space for every pointer address pointed to by the original pointer address. I left out error checking in order to simplfy my example but here is the same example with error checking.
const int m = 5, n = 3;
int i = 0;
int* *arr = NULL;
if((arr = malloc(sizeof(int*)*(m+1))) == NULL)
{
perror("ERROR(1): Failed to allocate memory for the initial pointer address ");
return 1;
}
for(i = 0; i < m; i++)
{
if((arr = malloc(sizeof(int*)*(m+1))) == NULL)
{
perror("ERROR(2): Failed to allocate memory for a subsequent pointer address ");
return 2;
}
}
Now that you have dynamicaly allocated your array you can just pass the pointer address.
int* *arr in the following the way.
void fun(const int n, const int m, int* *arr) {}
Also you don't necessarily have to keep track of the size of your arrays if the sizes are constant and if you use null terminated arrays. You just have to malloc the array using the constant integer variable's actual value and then check for the terminating null byte when iterating threw the array.
int* *arr = NULL;
if((arr = malloc(sizeof(int*)*6)) == NULL)'m'+1 = 6;
{
perror("ERROR(1): Failed to allocate memory for the initial pointer address ");
return 1;
}
for(i = 0; i < m; i++)
{
if((arr = malloc(sizeof(int*)*4) == NULL)//'n'+1 = 4
{
perror("ERROR(2): Failed to allocate memory for a subsequent pointer address ");
return 2;
}
}
You can then display the entire two dimensional array in the following way. Note that '\000' is the octagonal value for a null byte(00000000).
int i, j;
for(i = 0; arr[i] != '\000'; i++)
{
for(j = 0; arr[i][j] != '\000'; j++)
{
printf("%i ", arr[i][j]); //Prints the current element of the current array
}
printf("\n"); //This just ends the line so that each of the arrays is printed on it's own line.
}
Of course the above mentioned loops would have the same result as the following.
int i, j;
int m = 5;
int n = 3;
for(i = 0; i < m; i++)
{
for(j = 0; i < n; j++)
{
printf("%i ", arr[i][j]); //Prints the current element of the current array
}
printf("\n"); //This just ends the line so that each of the arrays is printed on it's own line.
}
Which means, in most situations there is no need for keeping track of an array's size but there are situations in which it is necessary. For example if one your arrays could possible contain a null byte other than the terminating null byte. The new null byte would shorten the array's size to the index of the new null byte. If you have any questions or comments feel free to comment below or message me.