A simple solution involves the Series constructor. You can simply pass the data type to the dtype
parameter. Also, the to_datetime
function can take a sequence of strings now.
Create Data
date_strings = ('2008-12-20','2008-12-21','2008-12-22','2008-12-23')
All three produce the same thing
pd.Series(date_strings, dtype='datetime64[ns]')
pd.Series(pd.to_datetime(date_strings))
pd.to_datetime(pd.Series(date_strings))
Benchmarks
The benchmarks provided by @waitingkuo are wrong. The first method is a bit slower than the other two, which have the same performance.
import datetime as dt
dates = [(dt.datetime(1960, 1, 1)+dt.timedelta(days=i)).date().isoformat()
for i in range(20000)] * 100
%timeit pd.Series(dates, dtype='datetime64[ns]')
730 ms ± 9.06 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit pd.Series(pd.to_datetime(dates))
426 ms ± 3.45 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit pd.to_datetime(pd.Series(dates))
430 ms ± 5.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)