Here my take on this question, realized by a predicate nonNegInt_oddPosSummands/2
and an auxiliary predicate list_n_sum/3
:
:- use_module(library(clpfd)).
list_n_sum([],_,0).
list_n_sum([Z|Zs],N,Sum) :-
Z #>= 1,
Z #=< N,
Z mod 2 #= 1,
Sum #= Z + Sum0,
Sum0 #>= 0,
list_n_sum(Zs,N,Sum0).
nonNegInt_oddPosSummands(N,List) :-
length(_,N),
list_n_sum(List,N,N),
chain(List,#<),
labeling([],List).
Now on to some queries!
First, "which lists can 19 be decomposed into?":
?- nonNegInt_oddPosSummands(19,Zs).
Zs = [19] ;
Zs = [1, 3, 15] ;
Zs = [1, 5, 13] ;
Zs = [1, 7, 11] ;
Zs = [3, 5, 11] ;
Zs = [3, 7, 9] ;
false.
Next, a more general query that does not terminate as the solution set is infinite. "Which positive integers N
can be decomposed into Zs
if Zs
has a length of 2?"
?- Zs=[_,_], nonNegInt_oddPosSummands(N,Zs).
N = 4, Zs = [1,3] ;
N = 6, Zs = [1,5] ;
N = 8, Zs = [1,7] ;
N = 8, Zs = [3,5] ;
N = 10, Zs = [1,9] ...
Finally, the most general query. Like the one above it does not terminate, as the solution set is infinite. However, it fairly enumerates all decompositions and corresponding positive integers.
?- nonNegInt_oddPosSummands(N,Zs).
N = 0, Zs = [] ;
N = 1, Zs = [1] ;
N = 3, Zs = [3] ;
N = 4, Zs = [1,3] ;
N = 5, Zs = [5] ;
N = 6, Zs = [1,5] ;
N = 7, Zs = [7] ;
N = 8, Zs = [1,7] ;
N = 8, Zs = [3,5] ;
N = 9, Zs = [9] ;
N = 9, Zs = [1,3,5] ;
N = 10, Zs = [1,9] ...