In order to make a C wrapper
for a C++
class to be used in for example a C#
application you can do the following.
In Visual Studio choose Win32 Console Application
and Enter a name, Then click next and on the next pane choose DLL
and click finish. When you are done you are represented with a DLL project including 3 files.
testdll.h
testdll.cpp
dllmain
Delete everything that exists inside your testdll.h
and testdll.cpp
files and copy the following contents to each respectively. Add these lines to your testdll.h
// Our C wrapper for creating a dll to be used in C# apps
// The following ifdef block is the standard way of creating macros which make exporting
// from a DLL simpler. All files within this DLL are compiled with the TESTDLL_EXPORTS
// symbol defined on the command line. This symbol should not be defined on any project
// that uses this DLL. This way any other project whose source files include this file see
// TESTDLL_API functions as being imported from a DLL, whereas this DLL sees symbols
// defined with this macro as being exported.
#ifdef TESTDLL_EXPORTS
#define TESTDLL_API __declspec(dllexport)
#else
#define TESTDLL_API __declspec(dllimport)
#endif
extern "C"
{
TESTDLL_API int OurTestFunction(int x, int y);
}
It is inside this extern "C" block where you define your interface, functions to access your class member functions.Note the TESTDLL
before the function prototype. All of your functions must be proceeded by that.
Add these to your testdll.cpp file:
#include "testdll.h"
#include "ourClass.h"
#define DLL_EXPORT
extern "C"
{
OurClass ourObject;
TESTDLL_API int OurTestFunction(int x, int y)
{
return ourObject.Add(x,y);
}
}
You compile this and get a C based dll which can be used in a C# application.
There are couple of things to notice though, The more important ones are:
- You need to understand that the code you use as a proxy- i mean
function definition inside your
testdll.h
, must only use C
compatible types, it is C after all not C++.
- is that you would want to be able to allocate new objects of your
class instead of just using one global object to access all methods.
For this, if you need to pass your class objects between member functions, you need to first convert it to a void*
which C can understand and then pass it and use it to access your member functions of whatever.
For example I would have something like this inside my testdll.h
in order to make user capable of managing the objects indirectly:
#ifdef TESTDLL_EXPORTS
#define TESTDLL_API __declspec(dllexport)
#else
#define TESTDLL_API __declspec(dllimport)
#endif
extern "C"
{
TESTDLL_API int OurTestFunction(int x, int y);
TESTDLL_API void* CreateHandle();
TESTDLL_API void* GetCurrentHandle();
TESTDLL_API void DisposeCurrentHandle();
TESTDLL_API void SetCurrentHandle(void* handle);
TESTDLL_API void* GetHandle();
TESTDLL_API void DisposeHandle(void*);
TESTDLL_API void DisposeArrayBuffers(void);
}
And inside my testdll.cpp I would define them as :
#include "testdll.h"
#include "ourClass.h"
#define DLL_EXPORT
extern "C"
{
OurClass *ourObject;
TESTDLL_API int OurTestFunction(int x, int y)
{
//return ourObject.Add(x,y); -- not any more !!
ourObject = reinterpret_cast<OurClass *>(GetHandle());
}
//Handle operations
TESTDLL_API void* CreateHandle()
{
if (ourObject == nullptr)
{
ourObject = new OurClass ;
}
else
{
delete ourObject ;
ourObject = new OurClass ;
}
return reinterpret_cast<void*>(ourObject);
}
TESTDLL_API void* GetCurrentHandle()
{
return reinterpret_cast<void*>(ourObject );
}
TESTDLL_API void DisposeCurrentHandle()
{
delete ourObject ;
ourObject = nullptr;
}
TESTDLL_API void SetCurrentHandle(void* handle)
{
if (handle != nullptr)
{
ourObject = reinterpret_cast<OurClass *>(handle);
}
else
{
ourObject = new OurClass ;
}
}
//factory utility function
TESTDLL_API void* GetHandle()
{
void* handle = GetCurrentHandle();
if (handle != nullptr)
{
return handle;
}
else
{
ourObject = new OurClass ;
handle = reinterpret_cast <void*>(ourObject );
}
return handle;
}
CDLL_API void DisposeHandle(void* handle)
{
OurClass * tmp = reinterpret_cast<OurClass *>(handle);
delete tmp;
}
TESTDLL_API void DisposeArrayBuffers(void)
{
ourObject = reinterpret_cast<OurClass *>(GetHandle());
return ourObject ->DisposeBuffers();//This is a member function defined solely for this purpose of being used inside this wrapper to delete any allocated resources by our class object.
}
}
And when we compile this Dll
, we can easily work with it inside our C# application. Before being able to use our functions defined in this dll we need to use appropriate [ImportDll()]
. So for our TestDll we would write:
[DllImport(@"TestDll.dll", CallingConvention = CallingConvention.Cdecl)]
public static extern int OurTestFunction(int firstNumber,int secondNumber);
And finally use it like:
private void btnReadBigram_Click(object sender, EventArgs e)
{
int x = OurTestFunction(10,50);
MessageBox.Show(x.ToString());
}
This is all I did to make my C++ class member functions accessible inside a C# application without any hassle.
Note:
When compiling your C# application make sure you have chosen the x86
Platform for compiling your project not AnyCpu
.You can change your platform through properties.
Note 2:
For knowing how to create a C++/CLI wrapper for your native C++ class read this: C++/CLI wrapper for your native C++ class.