Big Theta notation asks us to find 2 constants, k1 and k2 such that our function f(n) is between k1*g(n) and k2*g(n) for sufficiently large n. In other words, can we find some other function g(n) that is at some point less than f(n) and at another point greater than f(n) (monotonically each way).
To prove Big-Theta, we need to find g(n) such that f(n) is O(g(n)) (upper bound), and f(n) is Big-Omega(g(n)) (lower bound).
Prove Big-O
In terms of Big-O notation (where f(n) <= g(n)*k), your algorithm, f(n), is O(log(n)*n), In this case g(n) = log(n) * n.
Let's prove this:
Find Inner Loop Executions
How many times does the outer loop execute? Track the "step" variable:
Let's say that n is 100:
- 1
- 2
- 4
- 8
- 16
- 32
- 64
- 128 (do not execute this loop)
That's 7 executions for an input of 100. We can equivalently say that it executes (log n)
times (actually floor(log n) times, but log(n) is adequate).
Now let's look at the inner loop. Track the i variable, which starts at n
and decrements until it is of size step
each iteration. Therefore, the inner while loop will execute n - step times, for each value of step.
For example, when n = 100
- 100 - 1 = 99 iterations
- 100 - 2 = 98 iterations
- 100 - 4 = 96 iterations
- 100 - 8 = 92 iterations
- 100 - 16 = 84 iterations
- 100 - 32 = 68 iterations
- 100 - 64 = 36 iterations
So what's our total iteration count of the inner loop?
- (n-1)
- (n-1) + (n-2)
- (n-1) + (n-2) + (n-4)
- (n-1) + (n-2) + (n-4) + (n-8)
- etc.
How is this thing growing? Well, because we know the outer loop will iterate log(n) times, we can formulate this thing as a summation:
Sum(from i=0 to log(n)) n-2^i
= log(n)*n - Sum(from i=0 to log(n)) 2^i
= log(n)*n - (2^0 + 2^1 + 2^2 + ... + 2^log(n))
= log(n)*n - ( (1-2^log(n) ) / (1-2) ) (actually 2^log(n+1) but close enough)
= log(n)*n + 1 - n
So now our goal is to show that:
log(n)*n + 1 - n = O(log(n)*n)
Clearly, log(n)*n is O(log(n)*n), but what about the 1-n
?
1-n = O(log(n)*n)?
1-n <= k*log(n)*n, for some k?
Let k = 1
1-n <= log(n)*n?
Add n to both sides
1 <= n*log(n) + n? YES
So we've shown that f(n) is O(n*log(n)).
Prove Big-Omega
Now that we have an upper bound on f(n) using log(n) * n, let's try to get a lower bound on f(n) also using log(n) * n.
For a lower bound we use Big Omega notation. Big Omega looks for a function g(n)*k <= f(n) for some positive constant k.
k(n*log(n)) <= n*log(n) + 1 - n?
let k = 1/10
n*log(n)/10 <= n*log(n) + 1 - n?
(n*log(n) - 10n*log(n)) / 10 <= 1 - n?
-9n*log(n)/10 <= 1 - n? Multiply through by 10
-9n*log(n) <= 10 - 10n? Multiply through by -1 (flipping inequality)
9n*log(n) >= 10n - 10? Divide through by 9
n*log(n) >= 10n/9 - 10/9? Divide through by n
log(n) >= 10/9 - 10/9n ? Yes
Clearly, the quantity log(n) grows larger as (10/9 - 10/9n) tends towards 10/9. In fact for n = 1, 0 >= 10/9 - 10/9. 0 >= 0.
Prove Big-Theta
So now we've shown that f(n) is Big-Omega(n*log(n))
. Combining this with the proof for f(n) is O(n*log(n))
, and we've shown that f(n) is Big-Theta(n*log(n))
! (the exclamation point is for excitement, not factorial...)
g(n) = n*log(n), and one valid set of constants is k1=1/10 (lower bound) and k2 = 1 (upper bound).