I am doing a term paper in Text mining using R. Our task is to guess the tone of an article (positive/negative). The articles are stored in respective folders. I need to create a classification system which will learn through training samples. I reused the code from http://www.youtube.com/watch?v=j1V2McKbkLo The entire code except the last line got executed successfully. Following is the code.
tone<- c("Positive", "Negative")
folderpath <- "C:/Users/Tanmay/Desktop/R practice/Week8"
options(stringAsFactors = FALSE)
corpus<-Corpus(DirSource(folderpath))
corpuscopy<-corpus
summary(corpus)
inspect(corpus)
#Clean data
CleanCorpus <- function(corpus){
corpustemp <- tm_map(corpus, removeNumbers)
corpustemp <- tm_map(corpus, removePunctuation)
corpustemp <- tm_map(corpus, tolower)
corpustemp <- tm_map(corpus, removeWords, stopwords("english"))
corpustemp <- tm_map(corpus, stemDocument,language="english")
corpustemp <- tm_map(corpus, stripWhitespace)
return(corpustemp )
}
#Document term matrix
generateTDM <- function(tone,path) {
corpusdir <- sprintf("%s/%s",path,tone)
corpus<- Corpus(DirSource( directory=corpusdir ,encoding = "ANSI"))
corpustemp <- CleanCorpus(corpus)
corpusclean <- DocumentTermMatrix(corpustemp)
corpusclean <- removeSparseTerms(corpusclean , 0.7)
result <- list(Tone = tone, tdm = corpusclean)
}
tdm <- lapply(tone,generateTDM,path=folderpath)
#Attach tone
ToneBindTotdm <- function(tdm){
temp.mat <- data.matrix(tdm[["tdm"]])
temp.df <- as.data.frame(temp.mat)
temp.df <- cbind(temp.df,rep(tdm[["Tone"]]),nrow(temp.df))
colnames(temp.df)[ncol(temp.df)] <- "PredictTone"
return(temp.df)
}
Tonetdm <- lapply(tdm,ToneBindTotdm)
#Stack
Stacktdm <- do.call(rbind.fill,Tonetdm)
Stacktdm[is.na(Stacktdm)] <- 0
#Holdout
trainid <- sample(nrow(Stacktdm),ceiling(nrow(Stacktdm) * 0.7))
testid <- (1:nrow(Stacktdm)) [- trainid]
#knn
tdmone <- Stacktdm[,"PredictTone"]
tdmone.nl <- Stacktdm[, !colnames(Stacktdm) %in% "PredictTone"]
knnPredict <- knn(tdmone.nl[trainid,],tdmone.nl[testid,],tdmone[trainid],k=5)
When I tried to execute this, I got error in the last line (knn) :
**Error in knn(tdmone.nl[trainid, ], tdmone.nl[testid, ], tdmone[trainid], :
NA/NaN/Inf in foreign function call (arg 6)
In addition: Warning messages:
1: In knn(tdmone.nl[trainid, ], tdmone.nl[testid, ], tdmone[trainid], :
NAs introduced by coercion
2: In knn(tdmone.nl[trainid, ], tdmone.nl[testid, ], tdmone[trainid], :
NAs introduced by coercion**
Could anyone please help me out. Also if there are other simpler and better way to classify please point me to them. Thanks and sorry for the long post.