After much prodding I am starting migrating my R scripts to Python. Most of my work in R involved data frames, and I am using the DataFrame
object from the pandas package. In my script I need to read in a csv file and import the data into a DataFrame
object. Next I need to convert the hex values into a column labelled DATA
into bitwise data, and then create 16 new columns, one for each bit.
My example input data in file test.txt
looks as follows,
PREFIX,TEST,ZONE,ROW,COL,DATA
6_6,READ,0, 0, 0,BFED
6_6,READ,0, 1, 0,BB7D
6_6,READ,0, 2, 0,FFF7
6_6,READ,0, 3, 0,E7FF
6_6,READ,0, 4, 0,FBF8
6_6,READ,0, 5, 0,DE75
6_6,READ,0, 6, 0,DFFE
My python script test.py
is as follows,
import glob
import pandas as pd
import numpy as np
fname = 'test.txt'
df = pd.read_csv(fname, comment="#")
dfs = df[df.TEST == 'READ']
# function to convert the hexstring into a binary string
def hex2bin(hstr):
return bin(int(hstr,16))[2:]
# convert the hexstring in column DATA to binarystring ROWDATA
dfs['BINDATA'] = dfs['DATA'].apply(hex2bin)
# get rid of the column DATA
del dfs['DATA']
When I run this script, and inspect the object dfs
, I get the following,
PREFIX TEST ZONE ROW COL BINDATA
0 6_6 READ 0 0 0 1011111111101101
1 6_6 READ 0 1 0 1011101101111101
2 6_6 READ 0 2 0 1111111111110111
3 6_6 READ 0 3 0 1110011111111111
4 6_6 READ 0 4 0 1111101111111000
5 6_6 READ 0 5 0 1101111001110101
6 6_6 READ 0 6 0 1101111111111110
So now I am not sure how to split the column named BINDATA
into 16 new columns (could be named B0, B0, B2, ...., B15). Any help will be appreciated.
Thanks & Regards,
Derric.