Although C# tries to pretend that structure types derive from Object
, that's only half true. According to the CLI spec, a structure type specification actually defines two kinds of thing: a type of heap object which derives from System.ValueType
(and in turn System.Object
), and a kind of storage location (local variable, static variable, class field, struct field, parameter, or array slot) which does not derive from anything, but is implicitly convertible to the heap object type.
Every heap object instance contains all the fields defined by the type or its parent classes (if any), along with a header which identifies its type and some other information about the instance. Every struct-type storage location contains either the bytes necessary to hold its value (if a primitive type), or else holds the concatenated values of all its fields; in neither case does it contain any sort of header that identifies its type. Instead, value types rely upon information in the generated code to know what they are.
If one stores a value type to a storage location of that value type, the compiler will overwrite all the bytes occupied by the destination with values taken from the original value type. If, however, one tries to store a value type to a reference-type storage location (like Object
), the runtime will generate a new heap object with enough space to hold all the data from the value type, along with a header identifying its type, and store in the destination location a reference to that new object. If one tries to typecast a reference type to a value type, the runtime will first verify that the object is of the proper type and, if so, copy the data from the heap object to the destination.
There are a couple of tricky scenarios involving interfaces and generics. Interface types are reference types, but if a struct implements an interface, the implementing methods may act directly upon a boxed struct instance without having to unbox and rebox it. Further, interface types used as generic constraints do not require boxing. If one passes a variable of a value type like List<int>.Enumerator
to a function EnumerateThings<TEnumerator>(ref TEnumerator it) where TEnumerator: IEnumerator<int>
, that method will be able to accept a reference to that variable without boxing.