Ok, well it seems that you are confusing pass-by-reference with pass-by-value. Also, C and C++ are different languages. C doesn't support pass-by-reference.
Here are two C++ examples of pass by value:
// ex.1
int add(int a, int b)
{
return a + b;
}
// ex.2
void add(int a, int b, int *result)
{
*result = a + b;
}
void main()
{
int result = 0;
// ex.1
result = add(2,2); // result will be 4 after call
// ex.2
add(2,3,&result); // result will be 5 after call
}
When ex.1 is called, the constants 2
and 2
are passed into the function by making local copies of them on the stack. When the function returns, the stack is popped off and anything passed to the function on the stack is effectively gone.
The same thing happens in ex.2, except this time, a pointer to an int
variable is also passed on the stack. The function uses this pointer (which is simply a memory address) to dereference and change the value at that memory address in order to "return" the result. Since the function needs a memory address as a parameter, then we must supply it with one, which we do by using the &
"address-of" operator on the variable result
.
Here are two C++ examples of pass-by-reference:
// ex.3
int add(int &a, int &b)
{
return a+b;
}
// ex.4
void add(int &a, int &b, int &result)
{
result = a + b;
}
void main()
{
int result = 0;
// ex.3
result = add(2,2); // result = 2 after call
// ex.4
add(2,3,result); // result = 5 after call
}
Both of these functions have the same end result as the first two examples, but the difference is in how they are called, and how the compiler handles them.
First, lets clear up how pass-by-reference works. In pass-by-reference, generally the compiler implementation will use a "pointer" variable in the final executable in order to access the referenced variable, (or so seems to be the consensus) but this doesn't have to be true. Technically, the compiler can simply substitute the referenced variable's memory address directly, and I suspect this to be more true than generally believed. So, when using a reference, it could actually produce a more efficient executable, even if only slightly.
Next, obviously the way a function is called when using pass-by-reference is no different than pass-by-value, and the effect is that you have direct access to the original variables within the function. This has the result of encapsulation by hiding the implementation details from the caller. The downside is that you cannot change the passed in parameters without also changing the original variables outside of the function. In functions where you want the performance improvement from not having to copy large objects, but you don't want to modify the original object, then prefix the reference parameters with const
.
Lastly, you cannot change a reference after it has been made, unlike a pointer variable, and they must be initialized upon creation.
Hope I covered everything, and that it was all understandable.