The longest arithmetic progression subsequence problem is as follows. Given an array of integers A, devise an algorithm to find the longest arithmetic progression in it. In other words find a sequence i1 < i2 < … < ik, such that A[i1], A[i2], …, A[ik] form an arithmetic progression, and k is maximal. The following code solves the problem in O(n^2) time and space. (Modified from http://www.geeksforgeeks.org/length-of-the-longest-arithmatic-progression-in-a-sorted-array/ . )
#!/usr/bin/env python
import sys
def arithmetic(arr):
n = len(arr)
if (n<=2):
return n
llap = 2
L = [[0]*n for i in xrange(n)]
for i in xrange(n):
L[i][n-1] = 2
for j in xrange(n-2,0,-1):
i = j-1
k = j+1
while (i >=0 and k <= n-1):
if (arr[i] + arr[k] < 2*arr[j]):
k = k + 1
elif (arr[i] + arr[k] > 2*arr[j]):
L[i][j] = 2
i -= 1
else:
L[i][j] = L[j][k] + 1
llap = max(llap, L[i][j])
i = i - 1
k = j + 1
while (i >=0):
L[i][j] = 2
i -= 1
return llap
arr = [1,4,5,7,8,10]
print arithmetic(arr)
This outputs 4
.
However I would like to be able to find arithmetic progressions where up to one value is missing. So if arr = [1,4,5,8,10,13] I would like it to report that there is a progression of length 5 with one value missing.
Can this be done efficiently?