I made a small program to help with one solution. Personally, I believe the best would be a deterministic mathematical solution, but right now I lack the caffeine to even think on how to implement it. =)
Instead, I went with a SAR approach. Stop and Reverse is a technique used on stock trading (http://daytrading.about.com/od/stou/g/SAR.htm), and is heavily used to calculate optimal curves with a minimal of inference. The Wikipedia entry for parabolical SAR goes like this:
'The Parabolic SAR is calculated almost independently for each trend
in the price. When the price is in an uptrend, the SAR emerges below
the price and converges upwards towards it. Similarly, on a
downtrend, the SAR emerges above the price and converges
downwards.'
I adapted it to your problem. I start with a random value from your series. Then the code enters a finite number of iterations.
I pick another random value from the series stack.
If the new value plus the stack sum is inferior to the target, then the value is added; if superior, then decreased.
I can go on for as much as I want until I satisfy the condition (stack sum = target), or abort if the cycle can't find a valid solution.
If successful, I record the stack and the number of iterations. Then I redo everything.
An EXTREMELY crude code follows. Please forgive the hastiness. Oh, and It's in C#. =)
Again, It does not guarantee that you'll obtain the optimal path; it's a brute force approach. It can be refined; detect if there's a perfect match for a target hit, for example.
public static class SAR
{
//I'm considering Optimal as the smallest signature (number of members).
// Once set, all future signatures must be same or smaller.
private static Random _seed = new Random();
private static List<int> _domain = new List<int>() { 100, 80, 66, 24, 4, 2, 1 };
public static void SetDomain(string domain)
{
_domain = domain.Split(',').ToList<string>().ConvertAll<int>(a => Convert.ToInt32(a));
_domain.Sort();
}
public static void FindOptimalSAR(int value)
{
// I'll skip some obvious tests. For example:
// If there is no odd number in domain, then
// it's impossible to find a path to an odd
// value.
//Determining a max path run. If the count goes
// over this, it's useless to continue.
int _maxCycle = 10;
//Determining a maximum number of runs.
int _maxRun = 1000000;
int _run = 0;
int _domainCount = _domain.Count;
List<int> _currentOptimalSig = new List<int>();
List<String> _currentOptimalOps = new List<string>();
do
{
List<int> currSig = new List<int>();
List<string> currOps = new List<string>();
int _cycle = 0;
int _cycleTot = 0;
bool _OptimalFound = false;
do
{
int _cursor = _seed.Next(_domainCount);
currSig.Add(_cursor);
if (_cycleTot < value)
{
currOps.Add("+");
_cycleTot += _domain[_cursor];
}
else
{
// Your situation doesn't allow for negative
// numbers. Otherwise, just enable the two following lines.
// currOps.Add("-");
// _cycleTot -= _domain[_cursor];
}
if (_cycleTot == value)
{
_OptimalFound = true;
break;
}
_cycle++;
} while (_cycle < _maxCycle);
if (_OptimalFound)
{
_maxCycle = _cycle;
_currentOptimalOps = currOps;
_currentOptimalSig = currSig;
Console.Write("Optimal found: ");
for (int i = 0; i < currSig.Count; i++)
{
Console.Write(currOps[i]);
Console.Write(_domain[currSig[i]]);
}
Console.WriteLine(".");
}
_run++;
} while (_run < _maxRun);
}
}
And this is the caller:
String _Domain = "100, 80, 66, 25, 4, 2, 1";
SAR.SetDomain(_Domain);
Console.WriteLine("SAR for Domain {" + _Domain + "}");
do
{
Console.Write("Input target value: ");
int _parm = (Convert.ToInt32(Console.ReadLine()));
SAR.FindOptimalSAR(_parm);
Console.WriteLine("Done.");
} while (true);
This is my result after 100k iterations for a few targets, given a slightly modified series (I switched 25 for 24 for testing purposes):
SAR for Domain {100, 80, 66, 24, 4, 2, 1}
Input target value: 50
Optimal found: +24+24+2.
Done.
Input target value: 29
Optimal found: +4+1+24.
Done.
Input target value: 75
Optimal found: +2+2+1+66+4.
Optimal found: +4+66+4+1.
Done.
Now with your original series:
SAR for Domain {100, 80, 66, 25, 4, 2, 1}
Input target value: 50
Optimal found: +25+25.
Done.
Input target value: 75
Optimal found: +25+25+25.
Done.
Input target value: 512
Optimal found: +80+80+66+100+1+80+25+80.
Optimal found: +66+100+80+100+100+66.
Done.
Input target value: 1024
Optimal found: +100+1+80+80+100+2+100+2+2+2+25+2+100+66+25+66+100+80+25+66.
Optimal found: +4+25+100+80+100+1+80+1+100+4+2+1+100+1+100+100+100+25+100.
Optimal found: +80+80+25+1+100+66+80+80+80+100+25+66+66+4+100+4+1+66.
Optimal found: +1+100+100+100+2+66+25+100+66+100+80+4+100+80+100.
Optimal found: +66+100+100+100+100+100+100+100+66+66+25+1+100.
Optimal found: +100+66+80+66+100+66+80+66+100+100+100+100.
Done.
Cons: It is worth mentioning again: This algorithm does not guarantee that you will find the optimal values. It makes a brute-force approximation.
Pros: Fast. 100k iterations may initially seem a lot, but the algorithm starts ignoring long paths after it detects more and more optimized paths, since it lessens the maximum allowed number of cycles.