Goal: find a way to formally define a grammar that recognizes elements from a set 0 or 1 times in any order. Subsequently, I want to parse it and generate an AST as well.
For example: Say the set of valid strings in my language is {A, B, C}
. I want to define a grammar that recognizes all valid permutations of any number of those elements.
Syntactically valid strings would include:
- (the empty string)
A
,B A
, andC A B
Syntactically invalid strings would include:
A A
, andB A C B
To be clear, defining all possible permutations explicitly in a CFG is unacceptable for my purposes, since larger sets would be impossible to maintain.
From what I understand, such a language fails the pumping lemma for context free languages, so the solution will not be context free or regular.
Update
What I'm after is called a "permutation language", which Benedek Nagy has done some theoretical work on as an extension to context free languages.
Regarding a parser generator, I've only found talk of implementing parsers with a permutation phase (link). Parsers evidently have an exponential lower bound on the size of resulting CFG, and I haven't found any parser generators that support it anyhow.
A sort-of solution to this problem was written in ANTLR. It uses semantic predicates to 'code around' the issue.