How to simplify a given boolean expression with many variables (>10) so that the number of occurrences of each variable is minimized?
In my scenario, the value of a variable has to be considered ephemeral, that is, has to recomputed for each access (while still being static of course). I therefor need to minimize the number of times a variable has to be evaluated before trying to solve the function.
Consider the function
f(A,B,C,D,E,F) = (ABC)+(ABCD)+(ABEF)
Recursively using the distributive and absorption law one comes up with
f'(A,B,C,E,F) = AB(C+(EF))
I'm now wondering if there is an algorithm or method to solve this task in minimal runtime.
Using only Quine-McCluskey in the example above gives
f'(A,B,C,E,F) = (ABEF) + (ABC)
which is not optimal for my case. Is it save to assume that simplifying with QM first and then use algebra like above to reduce further is optimal?