I'm trying to get my head around CUB, and having a bit of trouble following the (rather incomplete) worked examples. CUB looks like it is a fantastic tool, I just can't make sense of the example code.
I've built a simple proto-warp reduce example:
#include <cub/cub.cuh>
#include <cuda.h>
#include <vector>
using std::vector;
#include <iostream>
using std::cout;
using std::endl;
const int N = 128;
__global__ void sum(float *indata, float *outdata) {
typedef cub::WarpReduce<float,4> WarpReduce;
__shared__ typename WarpReduce::TempStorage temp_storage;
int id = blockIdx.x*blockDim.x+threadIdx.x;
if( id < 128 ) {
outdata[id] = WarpReduce(temp_storage).Sum(indata[id]);
}
}
int main() {
vector<float> y(N), sol(N);
float *dev_y, *dev_sol;
cudaMalloc((void**)&dev_y,N*sizeof(float));
cudaMalloc((void**)&dev_sol,N*sizeof(float));
for( int i = 0; i < N; i++ ) {
y[i] = (float)i;
}
cout << "input: ";
for( int i = 0; i < N; i++ ) cout << y[i] << " ";
cout << endl;
cudaMemcpy(&y[0],dev_y,N*sizeof(float),cudaMemcpyHostToDevice);
sum<<<1,32>>>(dev_y,dev_sol);
cudaMemcpy(dev_sol,&sol[0],N*sizeof(float),cudaMemcpyDeviceToHost);
cout << "output: ";
for( int i = 0; i < N; i++ ) cout << sol[i] << " ";
cout << endl;
cudaFree(dev_y);
cudaFree(dev_sol);
return 0;
}
which returns all zeros.
I'm aware that this code would return a reduction that was banded with every 32nd element being the sum of a warp and the other elements being undefined - I just want to get a feel for how CUB works. Can someone point out what I'm doing wrong?
(also, does CUB deserve its own tag yet?)