We had a competition for fun at work about making the fastest levenshtein implementation and I came up with a faster one. First of all, I must say that it was not easy to beat your solution which was the fastest to find "out there". :)
This is tested with node.js and it my benchmarks results indicates that this implementation is ~15% faster on small texts (random words size 2-10 characters) and over twice as fast on longer texts (with lengths 30+ containing random characters)
Note: I removed array caching of all implementations
function levenshtein(s, t) {
if (s === t) {
return 0;
}
var n = s.length, m = t.length;
if (n === 0 || m === 0) {
return n + m;
}
var x = 0, y, a, b, c, d, g, h, k;
var p = new Array(n);
for (y = 0; y < n;) {
p[y] = ++y;
}
for (; (x + 3) < m; x += 4) {
var e1 = t.charCodeAt(x);
var e2 = t.charCodeAt(x + 1);
var e3 = t.charCodeAt(x + 2);
var e4 = t.charCodeAt(x + 3);
c = x;
b = x + 1;
d = x + 2;
g = x + 3;
h = x + 4;
for (y = 0; y < n; y++) {
k = s.charCodeAt(y);
a = p[y];
if (a < c || b < c) {
c = (a > b ? b + 1 : a + 1);
}
else {
if (e1 !== k) {
c++;
}
}
if (c < b || d < b) {
b = (c > d ? d + 1 : c + 1);
}
else {
if (e2 !== k) {
b++;
}
}
if (b < d || g < d) {
d = (b > g ? g + 1 : b + 1);
}
else {
if (e3 !== k) {
d++;
}
}
if (d < g || h < g) {
g = (d > h ? h + 1 : d + 1);
}
else {
if (e4 !== k) {
g++;
}
}
p[y] = h = g;
g = d;
d = b;
b = c;
c = a;
}
}
for (; x < m;) {
var e = t.charCodeAt(x);
c = x;
d = ++x;
for (y = 0; y < n; y++) {
a = p[y];
if (a < c || d < c) {
d = (a > d ? d + 1 : a + 1);
}
else {
if (e !== s.charCodeAt(y)) {
d = c + 1;
}
else {
d = c;
}
}
p[y] = d;
c = a;
}
h = d;
}
return h;
}
On longer texts it will get almost up to 3 times the speed of your implementation if it initially cache the inner loop's s.charCodeAt(y)
in an Uint32Array
. Longer texts also seemed to benefit from using a Uint16Array
as a the distance cost array. Here is the code for that solution
function levenshtein(s, t) {
if (s === t) {
return 0;
}
var n = s.length, m = t.length;
if (n === 0 || m === 0) {
return n + m;
}
var x = 0, y, a, b, c, d, g, h;
var p = new Uint16Array(n);
var u = new Uint32Array(n);
for (y = 0; y < n;) {
u[y] = s.charCodeAt(y);
p[y] = ++y;
}
for (; (x + 3) < m; x += 4) {
var e1 = t.charCodeAt(x);
var e2 = t.charCodeAt(x + 1);
var e3 = t.charCodeAt(x + 2);
var e4 = t.charCodeAt(x + 3);
c = x;
b = x + 1;
d = x + 2;
g = x + 3;
h = x + 4;
for (y = 0; y < n; y++) {
a = p[y];
if (a < c || b < c) {
c = (a > b ? b + 1 : a + 1);
}
else {
if (e1 !== u[y]) {
c++;
}
}
if (c < b || d < b) {
b = (c > d ? d + 1 : c + 1);
}
else {
if (e2 !== u[y]) {
b++;
}
}
if (b < d || g < d) {
d = (b > g ? g + 1 : b + 1);
}
else {
if (e3 !== u[y]) {
d++;
}
}
if (d < g || h < g) {
g = (d > h ? h + 1 : d + 1);
}
else {
if (e4 !== u[y]) {
g++;
}
}
p[y] = h = g;
g = d;
d = b;
b = c;
c = a;
}
}
for (; x < m;) {
var e = t.charCodeAt(x);
c = x;
d = ++x;
for (y = 0; y < n; y++) {
a = p[y];
if (a < c || d < c) {
d = (a > d ? d + 1 : a + 1);
}
else {
if (e !== u[y]) {
d = c + 1;
}
else {
d = c;
}
}
p[y] = d;
c = a;
}
h = d;
}
return h;
}
All benchmark results is from my tests and test-data might be different with your test-data.
The main 2 difference in this solution than to yours (and some other fast ones) I think is
- Not always do compare of the characters in the inner loop if not necessary.
- Sort of "Loop unrolling" in the outer loop doing 4 rows at a time in the levenshtein "matrix". This was a major performance win.
http://jsperf.com/levenshtein-distance/24
I will put this solution on github when I find the time :)
Update:
Finally, I put the solution on github
https://github.com/gustf/js-levenshtein. Its a bit modified/optimized but it is the same base algorithm.