Here is an alternative: Use Stacked
from my "splitstackshape" package.
Here it is applied on @Metrics's sample data:
# install.packages("splitstackshape")
library(splitstackshape)
Stacked(cbind(id = 1:nrow(mydata), mydata),
id.vars="id", var.stubs="V", sep = "V")
# id .time_1 V
# 1: 1 1 10
# 2: 1 2 21
# 3: 1 3 31
# 4: 2 1 11
# 5: 2 2 22
# 6: 2 3 32
# 7: 3 1 12
# 8: 3 2 23
# 9: 3 3 3
# 10: 4 1 13
# 11: 4 2 24
# 12: 4 3 34
It would be very fast if your data are large. Here are the speeds for the 12MB dataset you linked to. The sorting is different but the data are the same.
It still isn't faster than stack
though (but at some point, stack
starts to slow down).
See the system.time
s below:
reshape()
system.time(out <- reshape(x, idvar = "time", ids = row.names(x),
times = names(x), timevar = "id",
varying = list(names(x)),
v.names="value",
new.row.names = 1:prod(dim(x)),
direction = "long"))
# user system elapsed
# 53.11 0.00 53.11
head(out)
# id value time
# 1 V1 0.003808635 1
# 2 V1 -0.018807416 2
# 3 V1 0.008875447 3
# 4 V1 0.001148695 4
# 5 V1 -0.019365004 5
# 6 V1 0.012436560 6
Stacked()
system.time(out2 <- Stacked(cbind(id = 1:nrow(x), x),
id.vars="id", var.stubs="V",
sep = "V"))
# user system elapsed
# 0.30 0.00 0.29
out2
# id .time_1 V
# 1: 1 1 0.003808635
# 2: 1 10 -0.014184635
# 3: 1 100 -0.013341843
# 4: 1 101 0.006784138
# 5: 1 102 0.006463707
# ---
# 963868: 2317 95 0.009569451
# 963869: 2317 96 0.002497771
# 963870: 2317 97 0.009202519
# 963871: 2317 98 0.017007545
# 963872: 2317 99 -0.002495842
stack()
system.time(out3 <- cbind(id = 1:nrow(x), stack(x)))
# user system elapsed
# 0.09 0.00 0.09
head(out3)
# id values ind
# 1 1 0.003808635 V1
# 2 2 -0.018807416 V1
# 3 3 0.008875447 V1
# 4 4 0.001148695 V1
# 5 5 -0.019365004 V1
# 6 6 0.012436560 V1