There is a particular class of algorithm coding problems which require us to evaluate multiple queries which can be of two kind :
- Perform search over a range of data
- Update the data over a given range
One example which I've been recently working on is this(though not the only one) : Quadrant Queries
Now, to optimize my algorithm, I have had one idea : I can use dynamic programming to keep the search results for a particular range, and generate data for other ranges as required.
For example, if I have to calculate sum of numbers in an array from index 4 to 7, I can already keep sum of elements upto 4 and sum of elements upto 7 which is easy and then I'll just need the difference of the two + 4th element which is O(1). But this raises another problem : During the update operation, I'll have to update my stored search data for all the elements following the updated element. This seems to be inefficient, though I did not try it practically.
Someone suggested me that I can combine subsequent update operations using some special data structure.(Actually read it on some forum).
Question: Is there a known way to optimize these kind of problems? Is there a special data structure that does it? The idea I mentioned;Is it possible that it might be more efficient than direct approach? Should I try it out?