To better understand indirection levels in C, it can be instructive to look at how the compiler organizes its memory.
Consider the following example :
void function1 (int var1, int var2) { ... }
In this case, function1 will receive 2 variables. But how ?
These variables will be put into the call stack memory. This is a linear, LIFO (Last in, First Out) type of allocation strategy.
Before calling function1(), the compiler will put var1
then var2
into the call stack, and increment the position of the call stack ceil. Then it will call function1(). function1() knows it must get 2 arguments, and so it finds them into the call stack.
What happens after function1() finishes ? Well, the call stack is decremented, and all variables into it are simply "disregarded", which is almost the same as "being erased".
So it's pretty clear that whatever you do to these variables during function1() is going to be lost for the calling program. If anything has to remain available to the calling program, it needs to be provided into a memory space that will survive the call stack decrement step.
Note that the logic is the same for any variable inside function1() : it will be unavailable to the calling function after function1() finishes. In essence, any result still stored into function1() memory space is "lost".
There are 2 ways to retrieve a usable result from a function.
The main one is to save the result of the function into a variable of the calling program/function. Consider this example :
int* foo3(size_t n) { return (int*) malloc(n); }
void callerFunction()
{
int* p;
p = foo3(100); // p is still available after foo3 exits
}
The second, more complex, one is to provide as an argument a pointer to a structure which exists into the calling memory space.
Consider this example :
typedef struct { int* p; } myStruct;
void foo4(myStruct* s) { s->p = (int*) malloc(100); }
void callerFunction()
{
myStruct s;
foo4(&s); //p is now available, inside s
}
It is more complex to read, but also more powerful. In this example, myStruct contains a single pointer, but the structure could be a lot more complex. This open the perspective to offer myriad of variables as the result of a function, instead of being limited to basic types, as for the previous example with foo3().
So what happens when you know that your structure is in fact a simple basic type ? Well, you can just provide a pointer to it. And, by the way, pointer is itself a basic type. So if you want to get the result of a modified pointer, you can provide as an argument, a pointer to a pointer. And there we find foo1().
void foo1(int **p) {
*p = (int *) malloc(100); // caller can get the memory
}