Rather than pure inheritance, here, I'd go with prototype-extension, unless you build some big, ugly factory, just for the sake of saying that "MovingPlatform" inherited from "Platform" in a pure sense, it's not really what you'd expect it to be.
There are a few concerns (cheating, for one), but if your objects are all based wholly around this
, and you're okay with people potentially hacking away in the console, then you don't really have much to worry about.
First, understand what you're doing inside of Platform
:
var MyObject = function (a) {
this.property = a;
this.method = function (b) { this.property += b; };
};
Every time you make a new MyObject
, you're creating a brand new version of the .method
function.
That is to say, if you make 10,000 of these, there will be 10,000 copies of that function, as well.
Sometimes that's a very good and safe thing.
It can also be a very slow thing.
The problem is, because everything in your object is using this
, and because nothing inside of the function changes, there's no benefit to creating new copies -- just extra memory used.
...so:
MyObject = function (a) {
this.property = a;
};
MyObject.prototype.method = function (b) { this.property += b; };
var o = new MyObject(1);
o.method(2);
o.property; //3
When you call new X
, where X
has properties/methods on its prototype, those properties/methods get copied onto the object, during its construction.
It would be the same as going:
var method = function (b) { this.property += b; },
o = new MyObject(1);
o.method = method;
o.method(2);
o.property; // 3
Except without the extra work of doing it yourself, by hand.
The benefit here is that each object uses the same function.
They basically hand the function access to their whole this
, and the function can do whatever it wants with it.
There's a catch:
var OtherObj = function (a, b) {
var private_property = b,
private_method = function () { return private_property; };
this.public_property = a;
this.unshared_method = function () { var private_value = private_method(); return private_value; };
};
OtherObj.prototype.public_method = function () {
return private_property;
};
var obj = new OtherObj(1, "hidden");
obj.public_property; // 1
obj.unshared_method(); // "hidden"
obj.public_method(); // err -- private_property doesn't exist
So assuming you don't have much you care about staying private, the easiest way of doing this would be to make reusable function, which rely on this
, which you then give to multiple prototypes, through extension.
// collision-handling
var testCollision = function (target) { this./*...*/ },
handleCollision = function (obj) { this./* ... */ };
// movement-handling
var movePlatform = function (x, y, elapsed) { this.x += this.speed.x*elapsed; /*...*/ };
// not really the cleanest timestep implementation, but it'll do for examples
var Platform = function (texture, x, y, w, h) {
this.x = x;
// ...
},
MovingPlatform = function (texture, x, y, w, h, speedX, speedY, etc) {
this.etc = etc;//...
};
Platform.prototype.testCollision = testCollision;
Platform.prototype.handleCollision = handleCollision;
MovingPlatform.prototype. // both of the above, plus the movePlatform method
This is a lot by hand.
That's why functions in different libraries will clone
or extend
objects.
var bunchOfComponents = {
a : function () { },
b : 32,
c : { }
},
myObj = {};
copy(myObj, bunchOfComponents);
myObj.a();
myObj.b; //32
Your function-reuse goes up, while the horror of writing proper Class-based, hierarchical inheritance, with virtual-overrides, abstracts, and shared-private properties, by hand, goes down.