Arguments about why a certain way of doing things in Python "should be" faster can't be taken too seriously, because you're often measuring implementation details which may behave differently in certain situations. As a result, when people guess what should be faster, they're often (usually?) wrong. For example, I find that map
can actually be slower. Using this setup code:
import numpy as np, pandas as pd
import random, string
def make_test(num, width):
s = [''.join(random.sample(string.ascii_lowercase, width)) for i in range(num)]
df = pd.DataFrame({"a": s})
return df
Let's compare the time they take to make the indexing object -- whether a Series
or a list
-- and the resulting time it takes to use that object to index into the DataFrame
. It could be, for example, that making a list is fast but before using it as an index it needs to be internally converted to a Series
or an ndarray
or something and so there's extra time added there.
First, for a small frame:
>>> df = make_test(10, 10)
>>> %timeit df['a'].map(lambda x: x.startswith('t'))
10000 loops, best of 3: 85.8 µs per loop
>>> %timeit [x.startswith('t') for x in df['a']]
100000 loops, best of 3: 15.6 µs per loop
>>> %timeit df['a'].str.startswith("t")
10000 loops, best of 3: 118 µs per loop
>>> %timeit df[df['a'].map(lambda x: x.startswith('t'))]
1000 loops, best of 3: 304 µs per loop
>>> %timeit df[[x.startswith('t') for x in df['a']]]
10000 loops, best of 3: 194 µs per loop
>>> %timeit df[df['a'].str.startswith("t")]
1000 loops, best of 3: 348 µs per loop
and in this case the listcomp is fastest. That doesn't actually surprise me too much, to be honest, because going via a lambda
is likely to be slower than using str.startswith
directly, but it's really hard to guess. 10 is small enough we're probably still measuring things like setup costs for Series
; what happens in a larger frame?
>>> df = make_test(10**5, 10)
>>> %timeit df['a'].map(lambda x: x.startswith('t'))
10 loops, best of 3: 46.6 ms per loop
>>> %timeit [x.startswith('t') for x in df['a']]
10 loops, best of 3: 27.8 ms per loop
>>> %timeit df['a'].str.startswith("t")
10 loops, best of 3: 48.5 ms per loop
>>> %timeit df[df['a'].map(lambda x: x.startswith('t'))]
10 loops, best of 3: 47.1 ms per loop
>>> %timeit df[[x.startswith('t') for x in df['a']]]
10 loops, best of 3: 52.8 ms per loop
>>> %timeit df[df['a'].str.startswith("t")]
10 loops, best of 3: 49.6 ms per loop
And now it seems like the map
is winning when used as an index, although the difference is marginal. But not so fast: what if we manually turn the listcomp into an array
or a Series
?
>>> %timeit df[np.array([x.startswith('t') for x in df['a']])]
10 loops, best of 3: 40.7 ms per loop
>>> %timeit df[pd.Series([x.startswith('t') for x in df['a']])]
10 loops, best of 3: 37.5 ms per loop
and now the listcomp wins again!
Conclusion: who knows? But never believe anything without timeit
results, and even then you have to ask whether you're testing what you think you are.