from Understanding Android's webview addjavascriptinterface : "The method WebView.addJavascriptInterface sends a message to an instance of WebViewCore:
mWebViewCore.sendMessage(EventHub.ADD_JS_INTERFACE, arg); In WebViewCore.java there are a bunch of overloaded methods called sendMessage , but we don't really need to know which exactly is being called, since they do pretty much the same thing. There's even a nice comment to give us a hint that we're in the right place! All of them are delegating to an instance of EventHub which is some inner class. This method turns out to be synchronized, and is sending a message to an instance of Handler, which is a good indication that this is probably running in another thread, but for completeness sake, let's find out!
That Handler is instantiated in EventHub.transferMessages which is called from WebViewCore.initialize . There are a few more hops here, but eventually I found out that this is called from run in WebCoreThread (subclass of Runnable), which is instantiated along with a new Thread right here ." instantiated along with a new Thread right here ."
synchronized (WebViewCore.class) {
if (sWebCoreHandler == null) {
// Create a global thread and start it.
Thread t = new Thread(new WebCoreThread());
t.setName(THREAD_NAME);
t.start();
try {
WebViewCore.class.wait();
} catch (InterruptedException e) {
Log.e(LOGTAG, "Caught exception while waiting for thread " +
"creation.");
Log.e(LOGTAG, Log.getStackTraceString(e));
}
}
}
In other words, this could be the chain of calls in my opinion:
android.webkit.WebViewClassic
4159 @Override
4160 public void More ...addJavascriptInterface(Object object, String name) {
4161
4162 if (object == null) {
4163 return;
4164 }
4165 WebViewCore.JSInterfaceData arg = new WebViewCore.JSInterfaceData();
4166
4167 arg.mObject = object;
4168 arg.mInterfaceName = name;
4169
4170 // starting with JELLY_BEAN_MR1, annotations are mandatory for enabling access to
4171 // methods that are accessible from JS.
4172 if (mContext.getApplicationInfo().targetSdkVersion >= Build.VERSION_CODES.JELLY_BEAN_MR1) {
4173 arg.mRequireAnnotation = true;
4174 } else {
4175 arg.mRequireAnnotation = false;
4176 }
4177 mWebViewCore.sendMessage(EventHub.ADD_JS_INTERFACE, arg);
4178 }
android.webkit.WebViewCore
static class JSInterfaceData {
827 Object mObject;
828 String mInterfaceName;
829 boolean mRequireAnnotation;
830 }
java.lang.Object
37 public class Object {
38
39 private static native void registerNatives();
40 static {
41 registerNatives();
42 }
Returns the runtime class of this Object. The returned Class object is the object that is locked by static synchronized methods of the represented class. The actual result type is Class where |X| is the erasure of the static type of the expression on which getClass is called. For example, no cast is required in this code fragment:
Number n = 0;
Class<? extends Number> c = n.getClass();
Returns: The Class object that represents the runtime class of this object. See also: The Java Language Specification, Third Edition (15.8.2 Class Literals)
64
65 public final native Class<?> getClass();
From a Dalvik's perspective I think you are just registering a JNI callback via findClass like this from JNIHelp.c :
/*
* Register native JNI-callable methods.
*
* "className" looks like "java/lang/String".
*/
int jniRegisterNativeMethods(JNIEnv* env, const char* className,
const JNINativeMethod* gMethods, int numMethods)
{
jclass clazz;
LOGV("Registering %s natives\n", className);
clazz = (*env)->FindClass(env, className);
if (clazz == NULL) {
LOGE("Native registration unable to find class '%s', aborting\n",
className);
abort();
}
if ((*env)->RegisterNatives(env, clazz, gMethods, numMethods) < 0) {
LOGE("RegisterNatives failed for '%s', aborting\n", className);
abort();
}
(*env)->DeleteLocalRef(env, clazz);
return 0;
}
In conclusion my idea is derived from Native Libraries:
//Get jclass with env->FindClass
so maybe FindClass could be used instead of getClass...